Commit 2fc8b5cb authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 2c39e110
Pipeline #15625 canceled with stage
...@@ -64,18 +64,9 @@ $`\newcommand{\ddpt}[1]{\overset{\large\bullet\bullet}{#1}}`$ ...@@ -64,18 +64,9 @@ $`\newcommand{\ddpt}[1]{\overset{\large\bullet\bullet}{#1}}`$
&cos(a-b)=cos(a)cos(b)+-sin(a)sin(b)\end{align} &cos(a-b)=cos(a)cos(b)+-sin(a)sin(b)\end{align}
\right\}\Longrightarrow\\ \right\}\Longrightarrow\\
\quad\quad cos^2(a)=cos(a)cos(a)=\dfrac{1}{2}[cos(a+a)+cos(a-a)]\\ \quad\quad cos^2(a)=cos(a)cos(a)=\dfrac{1}{2}[cos(a+a)+cos(a-a)]\\
\quad\quad\quad\quad=\dfrac{1}{2}[1 + cos(2a)]}}`$ \quad\quad\quad\quad=\dfrac{1}{2}[1 + cos(2a)]}}`$
<br>
$`\begin{align} A_{onde} &= \left| \,2\,A\cdot cos\Big(\dfrac{\varphi_1 - \varphi_2}{2} \Big) \,\right|\\ $`\quad\quad =\sqrt{2\,A^2 \cdot \big(1 + cos\,(\varphi_1 - \varphi_2)\big)}`$
&\\
&=\sqrt{4\,A^2 \cdot \underbrace{cos\Big(\dfrac{\varphi_1 - \varphi_2}{2}\Big)\,cos\Big(\dfrac{\varphi_1 - \varphi_2}{2}\Big)}
_{\left.\begin{align} cos(a+b)=cos(a)cos(b)-sin(a)sin(b)\\
cos(a-b)=cos(a)cos(b)+-sin(a)sin(b)\end{align}\right\}\Rightarrow\\
&cos(a)cos(a)=cos^2(a)=\frac{1}{2}[cos(a+a)+cos(a-a)]\\
&=\frac{1}{2}[1 + cos(2a)]}
}\end{align}`$
$`\quad\quad =\sqrt{2\,A^2 \cdot \big(1 + cos\,(\varphi_1 - \varphi_2)\big)`$
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment