Commit 3095b4f6 authored by Claude Meny's avatar Claude Meny

Update textbook.fr.md

parent 02486746
Pipeline #13838 canceled with stage
......@@ -186,7 +186,7 @@ $`\dfrac{dv_i}{dt}=\dfrac{d\,\delta x_i}{dt}`$
$`\dfrac{\partial\mathcal{L}}{\partial \dpt{x}_i}\cdot\dfrac{d\,\delta x_i}{dt}`$
$`\quad=\dfrac{d}{dt}\bigg(\,\dfrac{\partial\mathcal{L}}{\partial \dpt{x}_i}\cdot \delta x_i\bigg)
-\dfrac{d}{dt}\bigg(\,\dfrac{\partial\mathcal{L}}{\partial \dpt{x}_i}\bigg)\cdot \delta x_i`$
$`\quad=\dfrac{d}{dt}\dfrac{\partial\mathcal{L}}{\partial \dpt{x}_i}\cdot \delta x_i
$`\quad=\dfrac{d}{dt}\bigg(\,\dfrac{\partial\mathcal{L}}{\partial \dpt{x}_i}\cdot \delta x_i\bigg)
-\dfrac{d}{dt}\dfrac{\partial\mathcal{L}}{\partial \dpt{x}_i}\cdot \delta x_i`$
......@@ -195,8 +195,39 @@ $`\delta \mathcal{S}`$
$`\;=\displaystyle\int_{t_1}^{t_2}
\bigg[
\dfrac{\partial\mathcal{L}}{\partial x_i}\cdot \delta x_i
+\dfrac{d}{dt}\bigg(\,\dfrac{\partial\mathcal{L}}{\partial \dpt{x}_i}\cdot \delta x_i\bigg)
-\dfrac{d}{dt}\dfrac{\partial\mathcal{L}}{\partial \dpt{x}_i}\cdot \delta x_i\bigg]\,dt`$
+\dfrac{d}{dt}\bigg(\,\dfrac{\partial\mathcal{L}}{\partial \dpt{x}_i}\cdot \delta x_i\bigg)`$
$`\,-\dfrac{d}{dt}\dfrac{\partial\mathcal{L}}{\partial \dpt{x}_i}\cdot \delta x_i\bigg]\,dt`$
$`\;=\displaystyle\int_{t_1}^{t_2}
\bigg[
\dfrac{\partial\mathcal{L}}{\partial x_i}\cdot \delta x_i
+\dfrac{d}{dt}\bigg(\,\dfrac{\partial\mathcal{L}}{\partial \dpt{x}_i}\cdot \delta x_i\bigg)`$
$`\,-\dfrac{d}{dt}\dfrac{\partial\mathcal{L}}{\partial \dpt{x}_i}\cdot \delta x_i\bigg]\,dt`$
$`\;=\displaystyle\int_{t_1}^{t_2}
\bigg[
\dfrac{\partial\mathcal{L}}{\partial x_i}\cdot \delta x_i
-\dfrac{d}{dt}\dfrac{\partial\mathcal{L}}{\partial \dpt{x}_i}\cdot \delta x_i\bigg]\,dt`$
$`+\displaystyle\int_{t_1}^{t_2}
\dfrac{d}{dt}\bigg(\,\dfrac{\partial\mathcal{L}}{\partial \dpt{x}_i}\cdot \delta x_i\bigg)\,dt`$
$`\;=\displaystyle\int_{t_1}^{t_2}
\bigg[
\dfrac{\partial\mathcal{L}}{\partial x_i}\cdot \delta x_i
-\dfrac{d}{dt}\dfrac{\partial\mathcal{L}}{\partial \dpt{x}_i}\cdot \delta x_i\bigg]\,dt`$
$`+\displaystyle\int_{t_1}^{t_2}
\dfrac{\partial\mathcal{L}}{\partial \dpt{x}_i}\cdot \delta x_i`$
comme s'impose $`\delta x_i(t_1)=\delta x_i(t_2)=0`$
$`\;=\displaystyle\int_{t_1}^{t_2}
\bigg[
\dfrac{\partial\mathcal{L}}{\partial x_i}\cdot \delta x_i
-\dfrac{d}{dt}\dfrac{\partial\mathcal{L}}{\partial \dpt{x}_i}\cdot \delta x_i\bigg]\,dt`$
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment