Commit 309e491f authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 618c3899
Pipeline #13545 canceled with stage
...@@ -57,7 +57,7 @@ $`\quad = ...@@ -57,7 +57,7 @@ $`\quad =
\color{blue}{\dfrac{\partial E_z}{\partial y}-\dfrac{\partial E_y}{\partial z}} \color{blue}{\dfrac{\partial E_z}{\partial y}-\dfrac{\partial E_y}{\partial z}}
\right)\end{array}\right]`$ \right)\end{array}\right]`$
     Nous obtenons au total :      Nous obtenons alors :
$`\overrightarrow{rot}\big(\overrightarrow{rot}\,\overrightarrow{E}\big)`$ $`\overrightarrow{rot}\big(\overrightarrow{rot}\,\overrightarrow{E}\big)`$
$`\quad = $`\quad =
...@@ -80,8 +80,8 @@ $`\quad = ...@@ -80,8 +80,8 @@ $`\quad =
$`\color{blue}{div\,\overrightarrow{U}=\dfrac{\partial U_x}{\partial x}+\dfrac{\partial U_y}{\partial y}+\dfrac{\partial U_z}{\partial z}}`$ $`\color{blue}{div\,\overrightarrow{U}=\dfrac{\partial U_x}{\partial x}+\dfrac{\partial U_y}{\partial y}+\dfrac{\partial U_z}{\partial z}}`$
* La divergence d'un champ vectoriel est un champ scalaire. * La divergence d'un champ vectoriel est un champ scalaire.
Le gradient d'un champ scalaire $`f`$ est le champ vectoriel, qui s'exprime en coordonnées cartésiennes : Le gradient d'un champ scalaire $`f`$ est le champ vectoriel, qui s'exprime en coordonnées cartésiennes :
$`\overrightarrow{grad}\,f=\left( $`\overrightarrow{grad}\,f=\left(
\begin{array}{l} \begin{array}{l}
...@@ -111,5 +111,36 @@ $`\quad = \left( ...@@ -111,5 +111,36 @@ $`\quad = \left(
\end{array}\right)`$ \end{array}\right)`$
      il reste simplement à combiner les résultats       il reste simplement à combiner les résultats :
$`\overrightarrow{grad}\big(div\;\overrightarrow{E}\big)
-\overrightarrow{rot}\big(\overrightarrow{rot}\,\overrightarrow{E}\big)`$
$`\quad = \left(
\begin{array}{l}
\dfrac{\partial^2 U_x}{\partial x^2}+\dfrac{\partial^2 U_y}{\partial x\, \partial y}+\dfrac{\partial^2 U_z}{\partial x \,\partial z}\\
\dfrac{\partial^2 U_x}{\partial y \,\partial x}+\dfrac{\partial^2 U_y}{\partial y^2}+\dfrac{\partial^2 U_z}{\partial y \,\partial z}\\
\dfrac{\partial^2 U_x}{\partial z \,\partial x}+\dfrac{\partial^2 U_y}{\partial z \,\partial y}+\dfrac{\partial^2 U_z}{\partial z^2}
\end{array}\right)`$
$`\quad -
\left(\begin{array}{l}
\dfrac{\partial^2 E_y}{\partial y\,\partial x}
-\dfrac{\partial^2 E_x}{\partial y^2}
-\dfrac{\partial^2 E_x}{\partial z^2}
+\dfrac{\partial^2 E_z}{\partial z\,\partial x} \\
\dfrac{\partial^2 E_z}{\partial z\,\partial y}
-\dfrac{\partial^2 E_y}{\partial z^2}
-\dfrac{\partial^2 E_y}{\partial x^2}
+\dfrac{\partial^2 E_x}{\partial x\,\partial y} \\
\dfrac{\partial^2 E_y}{\partial x\,\partial z}
-\dfrac{\partial^2 E_x}{\partial x^2}
-\dfrac{\partial^2 E_z}{\partial y^2}
+\dfrac{\partial^2 E_z}{\partial y\,\partial z} \\
\end{array}\right)`$
$`\quad = \left(\begin{array}{l}
\dfrac{\partial^2 U_x}{\partial x^2}+\dfrac{\partial^2 U_y}{\partial x\, \partial y}+\dfrac{\partial^2 U_z}{\partial x \,\partial z}\\
\dfrac{\partial^2 U_x}{\partial y \,\partial x}+\dfrac{\partial^2 U_y}{\partial y^2}+\dfrac{\partial^2 U_z}{\partial y \,\partial z}\\
\dfrac{\partial^2 U_x}{\partial z \,\partial x}+\dfrac{\partial^2 U_y}{\partial z \,\partial y}+\dfrac{\partial^2 U_z}{\partial z^2}\\
\end{array}\right)`$
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment