Commit 325b3bb9 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 08613e1f
Pipeline #15621 canceled with stage
...@@ -60,7 +60,7 @@ $`\newcommand{\ddpt}[1]{\overset{\large\bullet\bullet}{#1}}`$ ...@@ -60,7 +60,7 @@ $`\newcommand{\ddpt}[1]{\overset{\large\bullet\bullet}{#1}}`$
&=\sqrt{4\,A^2 \cdot cos\Big(\dfrac{\varphi_1 - \varphi_2}{2}\Big)\,cos\Big(\dfrac{\varphi_1 - \varphi_2}{2}\Big)} &=\sqrt{4\,A^2 \cdot cos\Big(\dfrac{\varphi_1 - \varphi_2}{2}\Big)\,cos\Big(\dfrac{\varphi_1 - \varphi_2}{2}\Big)}
\end{align}`$ \end{align}`$
<br> <br>
$`\color{blue}{\footnotesize{\left.\begin{align} \quad\quad &cos(a+b)=cos(a)cos(b)-sin(a)sin(b)\\ $`\color{blue}{\scriptsize{\left.\begin{align} \quad\quad &cos(a+b)=cos(a)cos(b)-sin(a)sin(b)\\
&cos(a-b)=cos(a)cos(b)+-sin(a)sin(b)\end{align} &cos(a-b)=cos(a)cos(b)+-sin(a)sin(b)\end{align}
\right\}\Longrightarrow\\ \right\}\Longrightarrow\\
\quad\quad\quad\quad cos^2(a)=cos(a)cos(a)=\frac{1}{2}[cos(a+a)+cos(a-a)]\\ \quad\quad\quad\quad cos^2(a)=cos(a)cos(a)=\frac{1}{2}[cos(a+a)+cos(a-a)]\\
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment