Commit 3280f609 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 7f138e14
Pipeline #14637 canceled with stage
...@@ -76,7 +76,7 @@ RÉSUMÉ<br> ...@@ -76,7 +76,7 @@ RÉSUMÉ<br>
<br> <br>
$`\displaystyle\begin{align} $`\displaystyle\begin{align}
\Large{\left.\dfrac{dN}{dt}\right\lvert_{\,\bigt} =r\,N(t)}&\quad \Longrightarrow\quad\left.\dfrac{dN}{N}\right\lvert_{\,\bigt}=r\,dt\\ \Large{\left.\dfrac{dN}{dt}\right\lvert_{\,\bigt} =&r\,N(t)}\quad \Longrightarrow\quad\left.\dfrac{dN}{N}\right\lvert_{\,\bigt}=r\,dt\\
\\ \\
&\Longrightarrow\quad\int_{N(t_1)}^{N(t_2)}\dfrac{dN}{N}=\int_{t_1}^{t_2} r\,dt\\ &\Longrightarrow\quad\int_{N(t_1)}^{N(t_2)}\dfrac{dN}{N}=\int_{t_1}^{t_2} r\,dt\\
\\ \\
...@@ -95,28 +95,29 @@ RÉSUMÉ<br> ...@@ -95,28 +95,29 @@ RÉSUMÉ<br>
&\Longrightarrow\quad \Large{N(t_2)=N(t_1)\;e^{\,r\,(t_2-t_1)}} &\Longrightarrow\quad \Large{N(t_2)=N(t_1)\;e^{\,r\,(t_2-t_1)}}
\end{align}`$ \end{align}`$
<br>
\\
&\Longrightarrow\quad
(ln\,|\underbrace{N(t_2)}_{\begin{array}{c}N>0\\|N|=N}end{array}}-\,ln\,|N(t_1)| = r\,(t_2 - t_1)
\end{align}`$
$`\displaystyle\begin{align} $`\displaystyle\begin{align}
\left.\dfrac{dN}{dt}\right\lvert_{\,\bigt}=r\,N(t)\quad &\Longrightarrow\quad \Large{\left.\dfrac{dN}{dt}\right\lvert_{\,\bigt} &=r\,N(t)}\quad \Longrightarrow\quad\left.\dfrac{dN}{N}\right\lvert_{\,\bigt}=r\,dt\\
\left.\dfrac{dN}{N}\right\lvert_{\,\bigt}=r(t)\,dt\\ \\
&\Longrightarrow\quad\int_{N(t_1)}^{N(t_2)}\dfrac{dN}{N}=\int_{t_1}^{t_2} r\,dt\\
\\
&\Longrightarrow\quad\big[\,ln\,|N|\,\big]_{N(t_1)}^{N(t_2)}= r \,\big[\,t\,\big]_{t_1}^{t_2}\\
\\
&\Longrightarrow\quad\underbrace{ln\,|N(t_2)|-\,ln\,|N(t_1)|}_{
N>0 \;\Longrightarrow\;|N|\,=\,N} = r\,(t_2 - t_1)\\
\\ \\
&\Longrtightarrow\quad &\Longrightarrow\quad ln\,N(t_2) = ln\,N(t_1) + r\,(t_2 - t_1)\\
\int_{t_1}^{t_2}\dfrac{dN}{N}=\int_{t_1}^{t_2} r(t)\,dt \\
&\Longrightarrow\quad \underbrace{exp\big[ln\,N(t_2)\big]}_{exp(ln\,x)\;=\;x}
=\underbrace{exp\big[ln\,N(t_1) + r\,(t_2 - t_1)\big]}_{exp (a+b)\;=\;exp\,a\times exp\,b}\\
\\
&\Longrightarrow\quad N(t_2)=N(t_1)\,exp\,\big[r\,(t_2 - t_1)\big]\\
\\
&\Longrightarrow\quad \Large{N(t_2)=N(t_1)\;e^{\,r\,(t_2-t_1)}}
\end{align}`$ \end{align}`$
$`\displaystyle\begin{align}
\left.\dfrac{dN}{dt}\right\lvert_{\,\bigt}=r\,N(t)\quad &\Longrightarrow\quad\left.\dfrac{dN}{N}\right\lvert_{\,\bigt}=r(t)\,dt
\end{align}`$
$`\left.\dfrac{dN}{dt}\right\lvert_{\,\bigt}=r\,N(t)\quad &\Longrightarrow\quad\left.\dfrac{dN}{N}\right\lvert_{\,\bigt}=r(t)\,dt`$
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment