Commit 3330e513 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent df4c0880
Pipeline #15681 canceled with stage
...@@ -304,8 +304,10 @@ RÉSUMÉ ...@@ -304,8 +304,10 @@ RÉSUMÉ
$`U(x,t)=A\cdot cos (\omega t - kx + \phi)`$ $`U(x,t)=A\cdot cos (\omega t - kx + \phi)`$
$`\; = A\cdot cos \Big(\omega t - kx + \underbrace{ \phi + \dfrac{\pi}{2}}{=\;\phi'} - \dfrac{\pi}{2}\Big)`$ $`\; = A\cdot cos \Big(\omega t - kx + \underbrace{ \phi + \dfrac{\pi}{2}}_{\color{blue}{=\;\phi'}} - \dfrac{\pi}{2}\Big)`$
$`\; = A\cdot \Big(\;\Big(cos \omega t + \dfrac{\pi- kx }{2} + \phi'\Big) - \dfrac{\pi}{2}\Big]`$ $`\; = A\cdot \Big[\;\underbrace{cos \Big(\omega t - kx + \phi'\Big) - \dfrac{\pi}{2}}_{cos(a-\pi/2})=cos(a)\,cos(\pi/2)+sin(a)\,sin(\pi/2)=sin(a)}\Big]`$
<!--\underbrace{ \phi + \dfrac{\pi}{2}}{=\;}- \dfrac{\pi}{2})`$--> <!--\underbrace{ \phi + \dfrac{\pi}{2}}{=\;}- \dfrac{\pi}{2})`$-->
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment