Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Courses
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
6
Issues
6
List
Board
Labels
Milestones
Merge Requests
4
Merge Requests
4
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
M3P2
Courses
Commits
33d9870b
Commit
33d9870b
authored
Mar 18, 2020
by
Claude Meny
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Add new file
parent
30712068
Pipeline
#1603
failed with stage
in 24 seconds
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
102 additions
and
0 deletions
+102
-0
textbook.fr.md
...axwell-equations/01.maxwell-equations-main/textbook.fr.md
+102
-0
No files found.
01.curriculum/01.physics-chemistry-biology/04.Niv4/04.electromagnetism/01.maxwell-equations/01.maxwell-equations-main/textbook.fr.md
0 → 100644
View file @
33d9870b
title: 'The 4 Maxwell's equations'
published: false
visible: true
---
### Les équations de Maxwell
Les équations de Maxwell locales précises les propriétés du champ électromagnétique
en tout point de l'espace.
$
`div \overrightarrow{E} = \dfrac{\rho}{\epsilon_0}`
$
$
`\overrightarrow{rot} \;\overrightarrow{E} = -\dfrac{\partial \overrightarrow{B}}{\partial t}`
$
$
`div \overrightarrow{B} = 0`
$
$
`\overrightarrow{rot} \;\overrightarrow{B} = \mu_0\;\overrightarrow{j} +
\mu_0 \epsilon_0 \;\dfrac{\partial \overrightarrow{j}}{\partial t}`
$
$
`\rho`
$ est la densité volumique de charge totale.
$
`\overrightarrow{j}`
$ est la densité volumique de courant totale.
### Équations de Maxwell et conservation de la charge
### Équations de Maxwell et propagation du champ électromagnétique
### Équations de Maxwell et énergie électromagnétique
### Complément à l'électromagnétisme de Maxwell
### Le spectre électromagnétique
### Rappel de l'équation d'onde d'un champ vectoriel
#### équation d'onde simple
$
`\Delta \overrightarrow{X} - \dfrac{1}{v_{\phi}} \; \dfrac{\partial^2 \;\overrightarrow{X}}{\partial\; t^2}=0`
$
de solution
#### équation d'onde amortie
$
`\Delta \overrightarrow{X} - \dfrac{1}{v_{\phi}} \; \dfrac{\partial^2 \;\overrightarrow{X}}{\partial\; t^2}=
\beta \; \dfrac{\partial \overrightarrow{X}}{\partial t}`
$
où $
`\beta`
$ est le terme d'amortissement
de solution
L'expression de l'opérateur Laplacien vectoriel $
`\Delta`
$ en fonction des opérateurs $
`grad`
$, $
`div`
$ et $
`rot`
$ est :
$
`\Delta =\overrightarrow{grad} \left(div\right) - \overrightarrow{rot}\, \left(\overrightarrow{rot}\right)`
$
### Equation d'onde pour le champ électromagnétique
(Ou "Etude du Laplacien du champ électromagnétique")
Pour établir l'expression $
`\;\;\Delta \overrightarrow{E}\;\;`
$, je calcule
$
`\;\;\overrightarrow{rot}\left(\overrightarrow{rot}\;\overrightarrow{E}\right)\;\;`
$ puis
$
`\;\;\overrightarrow{grad} \left(div \overrightarrow{E}\right)\;\;`
$ à partir des équations
de Maxwell :
*
$
`\overrightarrow{rot} \, \left( \overrightarrow{rot}\,\overrightarrow{E} \right)=
\overrightarrow{rot} \,\left( -\dfrac{\partial \overrightarrow{B}}{\partial t}\right)`
$
<br><br>
En physique classique non relativiste, espace et temps sont découplés. Les coordonnées spatiales
et la coordonnée temporelle sont indépendantes. L'ordre de dérivation ou intégration entre
des coordonnées spatiales et la coordonnés temporelle ne change pas le résultat, donc
je peux écrire :
<br><br>
$
`\overrightarrow{rot} \, \left( \overrightarrow{rot}\,\overrightarrow{E} \right)=
-\dfrac{\partial}{\partial t} \,\left(\overrightarrow{rot}\overrightarrow{B}\right)`
$
<br><br>
$
`\overrightarrow{rot} \, \left( \overrightarrow{rot}\,\overrightarrow{E} \right)=
-\dfrac{\partial}{\partial t} \,\left(\mu_0\;\overrightarrow{j} +
\mu_0 \epsilon_0 \;\dfrac{\partial \overrightarrow{E}}{\partial t}\right)`
$
<br><br>
$
`\overrightarrow{rot} \, \left( \overrightarrow{rot}\,\overrightarrow{E} \right)
=-\mu_0\;\dfrac{\partial \overrightarrow{j}}{\partial t} +
\mu_0 \epsilon_0 \;\dfrac{\partial^2 \overrightarrow{E}}{\partial t^2}`
$
<br><br>
*
$
`\overrightarrow{grad} \left( div \; \overrightarrow{E} \right) = \overrightarrow{grad}\left( \dfrac{\rho}{\epsilon_O} \right)`
$
La reconstruction de
$
`\Delta \;\overrightarrow{E} =\overrightarrow{grad} \left(div\;\overrightarrow{E}\right) - \overrightarrow{rot}\, \left(\overrightarrow{rot}\;\overrightarrow{E}\right)`
$
donne :
$
`\Delta \;\overrightarrow{E} = \overrightarrow{grad}\left( \dfrac{\rho}{\epsilon_O} \right) + \mu_0\;\dfrac{\partial \overrightarrow{j}}{\partial t} +
\mu_0 \epsilon_0 \;\dfrac{\partial^2 \overrightarrow{E}}{\partial t^2}`
$
ce qui donne par identification au premier terme de l'équation d'onde :
$
`\Delta \;\overrightarrow{E}-\mu_0 \epsilon_0 \;\dfrac{\partial^2 \overrightarrow{E}}{\partial t^2} = \dfrac{1}{\epsilon_O} \;
\overrightarrow{grad}\left(\rho \right)+ \mu_0\;\dfrac{\partial \overrightarrow{j}}{\partial t} `
$
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment