Commit 378ebc2a authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent f5c3afa5
Pipeline #21011 canceled with stage
......@@ -626,11 +626,11 @@ en direction du vecteur .... blabla bla...
*$`(L_{BC}^{\;A})^2`$* $`\; = (L_{BC}^{\;B})^2 + \Lambda^2\quad`$ (éq.1)
$`\quad\quad \color{blue}{\scriptsize{\text{remplace } \Lambda^2} \text{ par } (L_{BC}^{\;B})^2 \times (V^2\,/\,c^2)\text{ , (éq.2)}}`$
$`\hspace{1,5 cm} \color{blue}{\scriptsize{\text{remplace } \Lambda^2} \text{ par } (L_{BC}^{\;B})^2 \times (V^2\,/\,c^2)\text{ , (éq.2)}}`$
$`\hspace{1,2 cm} = (L_{BC}^{\;B})^2 + (L_{BC}^{\;B})^2 \times \dfrac{V^2}{c^2}`$
$`\hspace{1,5 cm} = (L_{BC}^{\;B})^2 + (L_{BC}^{\;B})^2 \times \dfrac{V^2}{c^2}`$
$`\hspace{1,2 cm} = (L_{BC}^{\;B})^2 \times \left\( 1 + \dfrac{V^2}{c^2}\right\)`$
$`\hspace{1,5 cm} = (L_{BC}^{\;B})^2 \times \left( 1 + \dfrac{V^2}{c^2}\right)`$
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment