Commit 3875b742 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent a2b3a879
Pipeline #15564 canceled with stage
...@@ -57,7 +57,7 @@ $`\newcommand{\ddpt}[1]{\overset{\large\bullet\bullet}{#1}}`$ ...@@ -57,7 +57,7 @@ $`\newcommand{\ddpt}[1]{\overset{\large\bullet\bullet}{#1}}`$
$`U_1(x,t) = A\cdot cos(kx - \omega t + \varphi_1)`$. $`U_1(x,t) = A\cdot cos(kx - \omega t + \varphi_1)`$.
$`U_2(x,t) = A\cdot cos(kx - \omega t + \varphi_2)`$. $`U_2(x,t) = A\cdot cos(kx - \omega t + \varphi_2)`$.
$`U(x,t) =\A\;\big[cos(\underbrace{kx - \omega t}_{\text{posons } kx - \omega t = \alpha} + \varphi_1)`$ $`U(x,t) =A\;\big[cos(\underbrace{kx - \omega t}_{\text{posons }\\ kx - \omega t = \alpha} + \varphi_1)`$
* L'onde résultante $`U = U_1 + U_2`$ : * L'onde résultante $`U = U_1 + U_2`$ :
$`\begin{align} U(x,t) &= U_1(x,t) + U_2(x,t) \\ $`\begin{align} U(x,t) &= U_1(x,t) + U_2(x,t) \\
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment