Commit 3d89dbd2 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent f5f8a082
Pipeline #10427 canceled with stage
......@@ -51,11 +51,11 @@ $`v^2=v\cdot\dfrac{\sin(\theta + \alpha)}{\cos(a)}`$
$`u_1\,v^1\,+\, u_2\,v^2\,=u\cdot\cos(\alpha)\cdot v\cdot\dfrac{\cos(a + \theta + \alpha)}
{\cos(a)} + u\cdot\sin(a + \alpha) \cdot v\cdot\dfrac{\sin(\theta + \alpha)}{\cos(a)}`$
$`\quad= u\,v\,\dfrac{1}{\cos(a)} \,[\cos(\alpha)\,\cos(a + \theta + \alpha)\,+\,\sin(a + \alpha)\,\sin(\theta + \alpha)]`$
$`\quad= u\,v\,\dfrac{1}{\cos(a)} \,\left[\cos(\alpha)\,\cos(a + \theta + \alpha)\,+\,\sin(a + \alpha)\,\sin(\theta + \alpha)\right]`$
On a
$`\cos(a + \theta + \alpha)=\cos[a + (\theta + \alpha)]=\cos(a)\,\cos(\theta + \alpha)-\sin(a)\,\sin(\theta + \alpha)`$
$`\cos(a + \theta + \alpha)=\cos\left[a + (\theta + \alpha)\right]=\cos(a)\,\cos(\theta + \alpha)-\sin(a)\,\sin(\theta + \alpha)`$
$`\sin(a + \alpha)=\sin(a)\cos(\alpha)+\sin(\alpha)\cos(a)`$
......@@ -63,11 +63,11 @@ $`\sin(\theta + \alpha)=\sin(\theta)\cos(\alpha)+\sin(\alpha)\cos(\theta)`$
donc
$`\quad= u\,v\,\dfrac{1}{\cos(a)} \,[\cos(a)\cos(\alpha)\cos(\theta + \alpha)\,-\,\sin(a)\sin(\alpha)\sin(\theta + \alpha)
$`u_1\,v^1\,+\, u_2\,v^2\,= u\,v\,\dfrac{1}{\cos(a)} \,\left[\cos(a)\cos(\alpha)\cos(\theta + \alpha)\,-\,\sin(a)\sin(\alpha)\sin(\theta + \alpha)
\,+\,\sin(a)\,\cos^2(\alpha)\,\sin(\theta)
\,+\,\sin(a)\,\cos(\alpha)\,\sin(\alpha)\,\cos(\theta)
\,+\,\cos(a)\,\sin(\alpha)\,\cos(\alpha)\,\sin(\theta)
\,+\,\cos(a)\,\sin^2(\alpha)\,\cos(\theta)]`$
\,+\,\cos(a)\,\sin^2(\alpha)\,\cos(\theta)\right]`$
On a
......@@ -77,11 +77,11 @@ $`\sin(\theta + \alpha)=\sin(\theta)\,\cos(\alpha)\,+\,\sin(\alpha)\,\cos(\theta
donc
$`\quad= u\,v\,\dfrac{1}{\cos(a)} \,[\cos(a)\cos(\alpha)\cos(\theta + \alpha)\,-\,\sin(a)\sin(\alpha)\sin(\theta + \alpha)
$`u_1\,v^1\,+\, u_2\,v^2\,= u\,v\,\dfrac{1}{\cos(a)} \,\left[\cos(a)\cos(\alpha)\cos(\theta + \alpha)\,-\,\sin(a)\sin(\alpha)\sin(\theta + \alpha)
\,+\,\sin(a)\,\cos^2(\alpha)\,\sin(\theta)
\,+\,\sin(a)\,\cos(\alpha)\,\sin(\alpha)\,\cos(\theta)
\,+\,\cos(a)\,\sin(\alpha)\,\cos(\alpha)\,\sin(\theta)
\,+\,\cos(a)\,\sin^2(\alpha)\,\cos(\theta)]`$
\,+\,\cos(a)\,\sin^2(\alpha)\,\cos(\theta)\right]`$
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment