Commit 3ed7c153 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 6a6b3d62
Pipeline #16457 canceled with stage
......@@ -50,12 +50,12 @@ valeurs et vecteurs propres
------------------------------
#### Puissance entiète d'une matrice carré
#### Puissance entière d'une matrice carré
Soit $`M`$ une matrice réelle carré de dimension $`m\times m`$.
Par définition : $`\forall k\in \mathbb{N}^{*}\,,\,`$
**$`\mathbf{M^k = \underbrace{M \times M \times \cdots \times M}_{\color{blue}{\text{k fois}}}}`$**
**$`\mathbf{M^k = \underbrace{M \times M \times \ddots \times M}_{\color{blue}{\text{k fois}}}}`$**
##### $`M`$ est diagonale`$
......@@ -63,9 +63,9 @@ Par définition : $`\forall k\in \mathbb{N}^{*}\,,\,`$
*$`\mathbf{M^2}`$* $`\; = M\times M`$
$`\quad = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \cdots & 0 \\ 0 & 0 & \lambda_m\\ \end{pmatrix}\;\times\;\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \cdots & 0 \\ 0 & 0 & \lambda_m\\ \end{pmatrix}`$
$`\quad = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m\\ \end{pmatrix}\;\times\;\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m\\ \end{pmatrix}`$
*$`\mathbf{\quad = \begin{pmatrix} \lambda_1^2 & 0 & 0 \\ 0 & \cdots & 0 \\ 0 & 0 & \lambda_m^2\\ \end{pmatrix}}`$*
*$`\mathbf{\quad = \begin{pmatrix} \lambda_1^2 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m^2\\ \end{pmatrix}}`$*
Et par récurrence,
......@@ -73,9 +73,9 @@ $`\forall k \in \mathbb{N}^{*}\{1}`$ <!--\setminus -->
**$`\mathbf{M^k}`$** $`\; = M^{k-1}\times M`$
$`\quad = \begin{pmatrix} \lambda_1^{k-1} & 0 & 0 \\ 0 & \cdots & 0 \\ 0 & 0 & \lambda_m^{k-1} \\ \end{pmatrix}\;\times\; \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \cdots & 0 \\ 0 & 0 & \lambda_m\\ \end{pmatrix}`$
$`\quad = \begin{pmatrix} \lambda_1^{k-1} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m^{k-1} \\ \end{pmatrix}\;\times\; \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \cdots & 0 \\ 0 & 0 & \lambda_m\\ \end{pmatrix}`$
**$`\mathbf{\quad = \begin{pmatrix} \lambda_1^k & 0 & 0 \\ 0 & \cdots & 0 \\ 0 & 0 & \lambda_m^k\\ \end{pmatrix}}`$**
**$`\mathbf{\quad = \begin{pmatrix} \lambda_1^k & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m^k\\ \end{pmatrix}}`$**
##### $`M`$ est non diagonale, mais diagonalisable`$
......@@ -84,22 +84,22 @@ $`\quad = \begin{pmatrix} \lambda_1^{k-1} & 0 & 0 \\ 0 & \cdots & 0 \\ 0 & 0 & \
*$`\mathbf{M^2}`$* $`\; = M\times M`$
$`\quad = P\,\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \cdots & 0 \\ 0 & 0 & \lambda_m\\ \end{pmatrix}\,\underbrace{P^{-1}\;\times\;
\; P}_{\color{blue}{= I_m}}\,\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \cdots & 0 \\ 0 & 0 & \lambda_m\\ \end{pmatrix}\,P^{-1}`$
$`\quad = P\,\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m\\ \end{pmatrix}\,\underbrace{P^{-1}\;\times\;
\; P}_{\color{blue}{= I_m}}\,\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m\\ \end{pmatrix}\,P^{-1}`$
$`\quad = P\,\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \cdots & 0 \\ 0 & 0 & \lambda_m \\ \end{pmatrix}^{\,2}`$
$`= P\,\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m \\ \end{pmatrix}^{\,2}`$
*$`\mathbf{\quad = P\,\begin{pmatrix} \lambda_1^2 & 0 & 0 \\ 0 & \cdots & 0 \\ 0 & 0 & \lambda_m^2\\ \end{pmatrix}\,\underbrace{P^{-1}}`$*
*$`\mathbf{= P\,\begin{pmatrix} \lambda_1^2 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m^2\\ \end{pmatrix}}`$*
Et par récurrence :
$`\forall k \in \mathbb{N}^{\*}\ {1}`$
$`\forall k \in \mathbb{N}^{*}\ \{1\}`$
**$`\mathbf{M^k}`$** $`\; = M^{k-1}\times M`$
$`\quad = P\,\begin{pmatrix} \lambda_1^{k-1} & 0 & 0 \\ 0 & \cdots & 0 \\ 0 & 0 & \lambda_m^{k-1} \\ \end{pmatrix}\,\underbrace{P^{-1}\;\times\; P}_{\color{blue}{= I_m}}\,\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \cdots & 0 \\ 0 & 0 & \lambda_m\\ \end{pmatrix}\,P^{-1}`$
$` = P\,\begin{pmatrix} \lambda_1^{k-1} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m^{k-1} \\ \end{pmatrix}\,\underbrace{P^{-1}\;\times\; P}_{\color{blue}{= I_m}}\,\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m\\ \end{pmatrix}\,P^{-1}`$
**$`\mathbf{\quad = P\,\begin{pmatrix} \lambda_1^k & 0 & 0 \\ 0 & \cdots & 0 \\ 0 & 0 & \lambda_m^k\\ \end{pmatrix}\,\underbrace{P^{-1}}`$**
**$`\mathbf{ = P\,\begin{pmatrix} \lambda_1^k & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m^k\\ \end{pmatrix}}`$**
<br>
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment