Commit 43a12d8a authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent d77aac27
Pipeline #15838 canceled with stage
......@@ -811,7 +811,7 @@ $`\quad\boldsymbol{\mathbf{=\color{brown}{2\,A\cdot cos\Big(\dfrac{\varphi_1-\va
$`\quad\quad\quad=\sqrt{4\,A^2 \cdot cos^2\Big(\dfrac{\varphi_1 - \varphi_2}{2}\Big)}`$
<br>
$`\color{blue}{\scriptsize{\left.\begin{align} \quad\quad &cos(a+b)=cos(a)cos(b)-sin(a)sin(b)\\
&cos(a-b)=cos(a)cos(b)+-sin(a)sin(b)\end{align}
&cos(a-b)=cos(a)cos(b)+sin(a)sin(b)\end{align}
\right\}\Longrightarrow\\
\quad\quad cos^2(a)=cos(a)cos(a)=\dfrac{1}{2}[cos(a+a)+cos(a-a)]\\
\quad\quad\quad\quad=\dfrac{1}{2}[1 + cos(2a)]}}`$
......@@ -1419,20 +1419,31 @@ $`\quad\quad \;\; = \cdots`$
<br>
**$`\quad\quad\;\;=\,\theta_{moy}(\overrightarrow{r},t)\,-\,\theta_{1-2}(\overrightarrow{r},t)`$**
à terminer,
$`cos\theta_1+cos\theta_2 =`$$`\;\underbrace{cos\,(\theta_{moy}+\Delta\theta_{1-2})+cos\,(\theta_{moy}-\Delta\theta_{1-2}}
_{\color{blue}{cos(a+b)=cos\,a \,cos\,b\;-\;sin\a\,sin\,b}}`$
$`\quad\;\; = cos\,\theta_{moy}\;cos\,\Delta\theta_{1-2}\;-\;sin\,\theta_{moy}\;sin\,\Delta\theta_{1-2}`$
* *Travaillons* les **termes $`(cos\theta_1+cos\theta_2)`$ et $`(cos\theta_1-cos\theta_2)`$* qui interviennent
dans l'expression de $`U(\vec{r},t)`$ :
<br>
**$`cos\theta_1+cos\theta_2 =`$**$`\;cos\,(\theta_{moy}+\Delta\theta_{1-2})+cos\,(\theta_{moy}-\Delta\theta_{1-2}`$
<br>
$`\color{blue}{\scriptsize{\left.\begin{align} \quad\quad &cos(a+b)=cos(a)cos(b)-sin(a)sin(b)\\
&cos(a-b)=cos(a)cos(b)+-sin(a)sin(b)\end{align}
\right\}\Longrightarrow\\
\quad\quad cos(a+b)\,+\,cos(a-b)\,=\,2\,cos(a)\,cos(b)}}`$
<br>
**$`\quad\;\; = 2\,cos\,\theta_{moy}\;cos\,\Delta\theta_{1-2}`$**
<br>
de même
<br>
**$`cos\theta_1-cos\theta_2 =`$**$`\;cos\,(\theta_{moy}+\Delta\theta_{1-2})-cos\,(\theta_{moy}-\Delta\theta_{1-2}`$
<br>
$`\color{blue}{\scriptsize{\left.\begin{align} \quad\quad &cos(a+b)=cos(a)cos(b)-sin(a)sin(b)\\
&cos(a-b)=cos(a)cos(b)+-sin(a)sin(b)\end{align}
\right\}\Longrightarrow\\
\quad\quad cos(a+b)\,-\,cos(a-b)\,=\,-\,2\,sin(a)\,sin(b)}}`$
<br>
**$`\quad\;\; = -\,2\,sin\,\theta_{moy}\;sin\,\Delta\theta_{1-2}`$**
de même
$`cos\theta_1-cos\theta_2 =`$$`\;\underbrace{cos\,(\theta_{moy}+\Delta\theta_{1-2})-cos\,(\theta_{moy}-\Delta\theta_{1-2}}
_{\color{blue}{cos(a-b)=cos\,a \,cos\,b\;+\;sin\a\,sin\,b}}`$
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment