Commit 457e80d1 authored by Claude Meny's avatar Claude Meny

Update textbook.fr.md

parent a7980171
Pipeline #12927 canceled with stage
......@@ -349,17 +349,44 @@ Je dois partir d'une contrainte sur les combinaisons d'opérateurs. Je choisis c
d'expression mathématique
$`\forall \overrightarrow{X}\big(\overrightarrow{r},t)\;,\quad div\big(\overrightarrow{X})=0`$.
$`\forall \overrightarrow{X}\big(\overrightarrow{r},t)\;,\quad div\big(\overrightarrow{rot}\,\overrightarrow{X})=0`$.
et je l'applique au champ magnétique. J'obtiens :
$`div\big(\overrightarrow{B}\big)=0`$
$`div\big(\overrightarrow{rot}\,\overrightarrow{B})=0`$.
la loi de Maxwell-Ampère permet d'écrire :
La loi de Maxwell-Ampère permet d'écrire :
$`div\Bigg[\overrightarrow{\mu_0\;\overrightarrow{j} +
\mu_0 \epsilon_0 \;\dfrac{\partial \overrightarrow{E}}{\partial t}}\Bigg]=0`$
$`div\Bigg(\mu_0\;\overrightarrow{j} +
\mu_0 \epsilon_0 \;\dfrac{\partial \overrightarrow{E}}{\partial t}}\Bigg)=0`$
En divisant les termes de droite et de gauche par $`\mu_0`$, l'équation se simplifie :
$`div\Bigg(\overrightarrow{j} +
\epsilon_0 \;\dfrac{\partial \overrightarrow{E}}{\partial t}}\Bigg)=0`$
L'équation précédente contient $`\overrightarrow{j}`$, je cherche à faire apparaître
la loi de Maxwell-Gauss pour faire apparaître $`\dens`$ :
$`div\Bigg(\overrightarrow{j}\Bigg) +
div\Bigg(\epsilon_0 \;\dfrac{\partial \overrightarrow{E}}{\partial t}}\Bigg)=0`$
L'espace et le temps étant découplés en physique classique, l'ordre de différentiation
et intégration n'importe pas si elles s'appliquent l'une à des coordonnées spatiales
et l'autre au temps. Ainsi :
$`div\Bigg(\overrightarrow{j}\Bigg) +
\dfrac{\partial}{\partial t}\Bigg(\epsilon_0 div\Big(\overrightarrow{E}\Bigg)=0`$
ce qui permet d'écrire,
$`div\Bigg(\overrightarrow{j}\Bigg) +
\dfrac{\partial\dens}{\partial t}=0`$
<!----------------------------
aurélie jean, biais cognitifs
----------------------------->
La divergence d'un rotationel d'un champ vectoriel est toujours nulle :
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment