Commit 494ab440 authored by Claude Meny's avatar Claude Meny

Update textbook.fr.md

parent 29717d8a
Pipeline #2803 failed with stage
in 23 seconds
...@@ -518,20 +518,24 @@ we shouldn't we use (http://www.electropedia.org/iev/iev.nsf/display?openform&ie ...@@ -518,20 +518,24 @@ we shouldn't we use (http://www.electropedia.org/iev/iev.nsf/display?openform&ie
$`\overrightarrow{U}=\begin{pmatrix}U_1\\U_2\\U_3\end{pmatrix}`$ or $`\overrightarrow{U}=\begin{bmatrix}U_1\\U_2\\U_3\end{bmatrix}`$ $`\overrightarrow{U}=\begin{pmatrix}U_1\\U_2\\U_3\end{pmatrix}`$ or $`\overrightarrow{U}=\begin{bmatrix}U_1\\U_2\\U_3\end{bmatrix}`$
instead of $`\overrightarrow{U}=\left|\begin{array}{l}U_1\\U_2\\U_3\end{array}\right.`$ as we do at INSA ? instead of $`\overrightarrow{U}=\left|\begin{array}{l}U_1\\U_2\\U_3\end{array}\right.`$ as we do at INSA ?
c * [ES] <br>
[FR] méthode des produits en croix :<br> [FR] méthode des produits en croix :<br>
[EN] <br>
$`\forall\overrightarrow{U}=\begin{pmatrix}U_1\\U_2\\U_3\end{pmatrix}`$ $`\forall\overrightarrow{U}=\begin{pmatrix}U_1\\U_2\\U_3\end{pmatrix}`$
$`\quad\forall\overrightarrow{V}=\begin{pmatrix}U_1\\U_2\\U_3\end{pmatrix}`$ $`\quad\forall\overrightarrow{V}=\begin{pmatrix}U_1\\U_2\\U_3\end{pmatrix}`$
$`\quad\vec{U}\land\vec{V}=\begin{pmatrix}U_1\\U_2\\U_3\end{pmatrix}\land\begin{pmatrix}V_1\\V_2\\V_3\end{pmatrix}`$ $`\quad\vec{U}\land\vec{V}=\begin{pmatrix}U_1\\U_2\\U_3\end{pmatrix}\land\begin{pmatrix}V_1\\V_2\\V_3\end{pmatrix}`$
$`\quad=±,\begin{pmatrix}U_2 V_3 - U_3 V_2\\U_3 V_1 - U_1 V_3\\U_1 V_2 - U_2 V_1\end{pmatrix}`$ $`\begin{pmatrix}U_2 V_3 - U_3 V_2\\U_3 V_1 - U_1 V_3\\U_1 V_2 - U_2 V_1\end{pmatrix}`$
$`=U_1V_1\,\overrightarrow{e_3}+U_2V_3\,\overrightarrow{e_1}+U_3V_1\,\overrightarrow{e_2}`$
$`- U_1V_3\,\overrightarrow{e_2}-U_2V_1\,\overrightarrow{e_3}-U_3V_2\,\overrightarrow{e_1}`$
* [ES] <br> * [ES] <br>
[FR] <br> [FR] <br>
[EN] method similar to the sum used to obtain the determinant of a matrix :<br> [EN] method similar to the sum used to obtain the determinant of a matrix :<br>
<br>$`\vec{U}\land\vec{V}=\begin{vmatrix} \overrightarrow{e_1}&\overrightarrow{e_2}&\overrightarrow{e_3}\\ <br>$`\vec{U}\land\vec{V}=\begin{vmatrix} \overrightarrow{e_1}&\overrightarrow{e_2}&\overrightarrow{e_3}\\
U_1 & U_2 & U_3\\V_1 & V_2 & V_3\end{vmatrix}`$ U_1 & U_2 & U_3\\V_1 & V_2 & V_3\end{vmatrix}`$
$`=U_1V_1\overrightarrow{e_3}+U_2V_3\overrightarrow{e_1}+U_3V_1\overrightarrow{e_2}`$ $`=U_1V_1\,\overrightarrow{e_3}+U_2V_3\,\overrightarrow{e_1}+U_3V_1\,\overrightarrow{e_2}`$
$`- U_1V_3\overrightarrow{e_2}-U_2V_1\overrightarrow{e_3}-U_3V_2\overrightarrow{e_1}`$ $`- U_1V_3\,\overrightarrow{e_2}-U_2V_1\,\overrightarrow{e_3}-U_3V_2\,\overrightarrow{e_1}`$
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment