Commit 4a809916 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent b69206e7
Pipeline #16238 canceled with stage
...@@ -257,9 +257,9 @@ $`\Longrightarrow\quad\overrightarrow{dl} \cdot \overrightarrow{B}=0`$ ...@@ -257,9 +257,9 @@ $`\Longrightarrow\quad\overrightarrow{dl} \cdot \overrightarrow{B}=0`$
**$`\displaystyle\quad\quad\quad\quad\mathbf{\boldsymbol{ = h\; B_z(\rho_M)}}`$** **$`\displaystyle\quad\quad\quad\quad\mathbf{\boldsymbol{ = h\; B_z(\rho_M)}}`$**
<br> <br>
* De même, si i **$`\mathbf{\;\overrightarrow{dl}_{DA}=-\,dz\,\overrightarrow{e_z}}`$** : * De même, si i *$`\mathbf{\;\overrightarrow{dl}_{DA}=-\,dz\,\overrightarrow{e_z}}`$* :
<br><br> <br><br>
**$`\mathbf{\oint_{\Gamma_A}\overrightarrow{B}\cdot\overrightarrow{dl}}`$** *$`\mathbf{\oint_{\Gamma_A}\overrightarrow{B}\cdot\overrightarrow{dl}}`$*
$`\displaystyle\,=\int_{DA} \overrightarrow{B}(\rho_{DA})\cdot\overrightarrow{dl}_{DA} + \int_{AB} \underbrace{\overrightarrow{B}\cdot\overrightarrow{dl}_{AB}}_{\color{blue}{\quad\;=\,0}}`$ $`\displaystyle\,=\int_{DA} \overrightarrow{B}(\rho_{DA})\cdot\overrightarrow{dl}_{DA} + \int_{AB} \underbrace{\overrightarrow{B}\cdot\overrightarrow{dl}_{AB}}_{\color{blue}{\quad\;=\,0}}`$
$`\displaystyle\quad\quad\quad\quad +\int_{BC} \underbrace{\overrightarrow{B}(\rho_{BC})}_{\color{blue}{=\,0}}\cdot\overrightarrow{dl}_{BC} + \int_{CD}\underbrace{\overrightarrow{B}\cdot\overrightarrow{dl}_{CD}}_{\color{blue}{\quad\;=\,0}}`$ $`\displaystyle\quad\quad\quad\quad +\int_{BC} \underbrace{\overrightarrow{B}(\rho_{BC})}_{\color{blue}{=\,0}}\cdot\overrightarrow{dl}_{BC} + \int_{CD}\underbrace{\overrightarrow{B}\cdot\overrightarrow{dl}_{CD}}_{\color{blue}{\quad\;=\,0}}`$
<br> <br>
...@@ -269,7 +269,7 @@ $`\Longrightarrow\quad\overrightarrow{dl} \cdot \overrightarrow{B}=0`$ ...@@ -269,7 +269,7 @@ $`\Longrightarrow\quad\overrightarrow{dl} \cdot \overrightarrow{B}=0`$
<br> <br>
$`\displaystyle\quad\quad\quad\quad = \Big[ B_z(\rho_{DA})\times z\Big]_{z_0+h}^{z_0}`$ $`\displaystyle\quad\quad\quad\quad = \Big[ B_z(\rho_{DA})\times z\Big]_{z_0+h}^{z_0}`$
<br> <br>
**$`\displaystyle\quad\quad\quad\quad\mathbf{\boldsymbol{ = -\, h\; B_z(\rho_M)}}`$** *$`\displaystyle\quad\quad\quad\quad\mathbf{\boldsymbol{ = -\, h\; B_z(\rho_M)}}`$*
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment