Commit 4bdc5859 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent df26c800
Pipeline #13708 canceled with stage
...@@ -70,14 +70,14 @@ PRINCIPALES COMBINAISONS ...@@ -70,14 +70,14 @@ PRINCIPALES COMBINAISONS
* coordonnées cylindriques $`(\rho\,,\,\varphi\,,\,z)`$ : * coordonnées cylindriques $`(\rho\,,\,\varphi\,,\,z)`$ :
<br> <br>
$`\Delta\,\phi=\dfrac{1}{\rho}\cdot\dfrac{\partial}{\partial \rho}\left(\rho\,\dfrac{\partial \phi}{\partial \rho}\right)`$ $`\Delta\,\phi=\dfrac{1}{\rho}\cdot\dfrac{\partial}{\partial \rho}\left(\rho\,\dfrac{\partial \phi}{\partial \rho}\right)`$
$`+\dfrac{1}{\rho^2}\cdot\dfrac{\partial^2 \phi}{\partial \varphi^2}`$ $`\;+\;\dfrac{1}{\rho^2}\cdot\dfrac{\partial^2 \phi}{\partial \varphi^2}`$
$`+\dfrac{\partial^2 \phi}{\partial z^2}`$ $`\;+\;\dfrac{\partial^2 \phi}{\partial z^2}`$
<br> <br>
* coordonnées sphérique $`(r\,,\,\theta\,,\,\varphi)`$ : * coordonnées sphérique $`(r\,,\,\theta\,,\,\varphi)`$ :
<br> <br>
$`\Delta\,\phi=\dfrac{1}{r}\cdot\dfrac{\partial^2}{\partial r^2}(r\phi)`$ $`\Delta\,\phi=\dfrac{1}{r}\cdot\dfrac{\partial^2}{\partial r^2}(r\phi)`$
$`+\dfrac{1}{r^2\,\sin\theta}\cdot\dfrac{\partial}{\partial \theta}\left(\sin\theta\dfrac{\partial \phi}{\partial \theta}\right)`$ $`\;+\;\dfrac{1}{r^2\,\sin\theta}\cdot\dfrac{\partial}{\partial \theta}\left(\sin\theta\dfrac{\partial \phi}{\partial \theta}\right)`$
$`+\dfrac{1}{r^2\,\sin^2\theta}\cdot\dfrac{\partial^2 \phi}{\partial \varphi^2}`$ $`\;+\;\dfrac{1}{r^2\,\sin^2\theta}\cdot\dfrac{\partial^2 \phi}{\partial \varphi^2}`$
--- ---
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment