Commit 4c56aaf7 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 5d428cb8
Pipeline #15586 canceled with stage
...@@ -60,7 +60,7 @@ $`\newcommand{\ddpt}[1]{\overset{\large\bullet\bullet}{#1}}`$ ...@@ -60,7 +60,7 @@ $`\newcommand{\ddpt}[1]{\overset{\large\bullet\bullet}{#1}}`$
**$`\mathbf{U(x,t)}`$**$`\; = U_1(x,t) + U_2(x,t)`$ **$`\large{\mathbf{U(x,t)}}`$**$`\; = U_1(x,t) + U_2(x,t)`$
<br> <br>
$`\begin{align} \quad &=A\;\big[\,cos(\underbrace{kx - \omega t}_{\text{ posons }\\ kx - \omega t \,=\, \alpha} + \varphi_1) + cos(\underbrace{kx - \omega t}_{=\; \alpha} + \varphi_1)\,\big] $`\begin{align} \quad &=A\;\big[\,cos(\underbrace{kx - \omega t}_{\text{ posons }\\ kx - \omega t \,=\, \alpha} + \varphi_1) + cos(\underbrace{kx - \omega t}_{=\; \alpha} + \varphi_1)\,\big]
&\\ &\\
...@@ -76,11 +76,12 @@ $`\begin{align} \quad &=A\;\big[\,cos(\underbrace{kx - \omega t}_{\text{ posons ...@@ -76,11 +76,12 @@ $`\begin{align} \quad &=A\;\big[\,cos(\underbrace{kx - \omega t}_{\text{ posons
&=A\;\big[\,\underbrace{cos(\alpha ')\,cos\Big(\dfrac{\varphi_1-\varphi_2}{2}\Big)\,-\,sin(\alpha ')\,sin\Big(\dfrac{\varphi_1-\varphi_2}{2}}_{\text{car }cos(a+b)\;=\;cos\,a\,cos\,b\;-\;sin\,a\,sin\,b}\big)\\ &=A\;\big[\,\underbrace{cos(\alpha ')\,cos\Big(\dfrac{\varphi_1-\varphi_2}{2}\Big)\,-\,sin(\alpha ')\,sin\Big(\dfrac{\varphi_1-\varphi_2}{2}}_{\text{car }cos(a+b)\;=\;cos\,a\,cos\,b\;-\;sin\,a\,sin\,b}\big)\\
&\quad + \underbrace{cos(\alpha ')\,cos\Big(\dfrac{\varphi_1-\varphi_2}{2}\Big)\,+\,sin(\alpha ')\,sin\Big(\dfrac{\varphi_1-\varphi_2}{2}}_{\text{car }cos(a-b)\;=\;cos\,a\,cos\,b\;+\;sin\,a\,sin\,b}\big)\,\Big]\\ &\quad + \underbrace{cos(\alpha ')\,cos\Big(\dfrac{\varphi_1-\varphi_2}{2}\Big)\,+\,sin(\alpha ')\,sin\Big(\dfrac{\varphi_1-\varphi_2}{2}}_{\text{car }cos(a-b)\;=\;cos\,a\,cos\,b\;+\;sin\,a\,sin\,b}\big)\,\Big]\\
&\\ &\\
&=2\,A\cdot cos(\alpha ')\,cos\Big(\dfrac{\varphi_1-\varphi_2}{2}\Big)\\ &=2\,A\cdot cos(\alpha ')\,cos\Big(\dfrac{\varphi_1-\varphi_2}{2}\Big)
&\\ \end{align}`$
&=\underbrace{2\,A\cdot cos\Big(\dfrac{\varphi_1-\varphi_2}{2}\Big)}_{\text{amplitude de l'onde résultante}} \cdot cos\Big(\underbrace{kx - \omega t + \dfrac{\varphi_1+\varphi_2}{2}\Big)}_{\text{pulsation }\omega\text{ inchangée}}\\ <br>
&\\ **$`\quad=\underbrace{2\,A\cdot cos\Big(\dfrac{\varphi_1-\varphi_2}{2}\Big)}_{\color{blue}{\text{amplitude de l'onde résultante}}} \cdot cos\Big(\underbrace{kx - \omega t + \dfrac{\varphi_1+\varphi_2}{2}\Big)}_{\text{pulsation }\omega\text{ inchangée}}`$**
\end{align}`$
* L'onde résultante $`U = U_1 + U_2`$ : * L'onde résultante $`U = U_1 + U_2`$ :
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment