Commit 4c8da5cc authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 07f07d68
Pipeline #19529 canceled with stage
......@@ -14,12 +14,12 @@ visible: false
##### Expression de la divergence en coordonnées cartésiennes
<br>**$`\boldsymbol{\mathbf{div\,\overrightarrow{X}\;=\;\color{black}{\dfrac{d\Phi_X}{d\tau}}\;=\;\dfrac{\partial X_x}{\partial x}+\dfrac{\partial X_y}{\partial y}+\dfrac{\partial X_z}{\partial z}
<br>**$`\boldsymbol{\mathbf{div\,\overrightarrow{X}\;=\;\color{gray}{\dfrac{d\Phi_X}{d\tau}}\;=\;\dfrac{\partial X_x}{\partial x}+\dfrac{\partial X_y}{\partial y}+\dfrac{\partial X_z}{\partial z}
}}`$**
##### Expression de la divergence en coordonnées cylindriques
<br>**$`\boldsymbol{\mathbf{div\,\overrightarrow{X}\;\color{black}{=\;\dfrac{d\Phi_X}{d\tau}}\;=\;\dfrac{1}{\rho}\;\dfrac{\partial\,(\,\rho\,X_{\rho})}{\partial\,\rho}
<br>**$`\boldsymbol{\mathbf{div\,\overrightarrow{X}\;\color{gray}{=\;\dfrac{d\Phi_X}{d\tau}}\;=\;\dfrac{1}{\rho}\;\dfrac{\partial\,(\,\rho\,X_{\rho})}{\partial\,\rho}
+\dfrac{1}{\rho}\;\dfrac{\partial\,X_{\varphi}}{\partial\,\varphi}+\dfrac{\partial\,X_{z}}{\partial\,z}}}`$**
<br>**$`div\,\overrightarrow{X}\;\color{gray}{=\;\dfrac{d\Phi_X}{d\tau}}\;=\;\dfrac{1}{\rho}\;\dfrac{\partial\,(\,\rho\,X_{\rho})}{\partial\,\rho}
......@@ -28,9 +28,9 @@ visible: false
##### Expression de la divergence en coordonnées sphériques
<br>**$`\mathbf{\boldsymbol{div\,\overrightarrow{X}\color{gray}{\;=\dfrac{d\Phi_X}{d\tau}}\,=
\; &\dfrac{1}{r^2}\;\dfrac{\partial\,(r^2\,X_r}{\partial\,r)}}}`$
<br>**$`\mathbf{\boldsymbol{+ \dfrac{1}{r\,sin\,\theta}\;\dfrac{\partial\,(sin\,\theta\,X_{\theta})}{\partial\,\theta}}}`$**
<br>**$`\mathbf{\boldsymbol{+ \dfrac{1}{r\,sin\,\theta}\;\dfrac{\partial\,X_{\varphi}}{\partial\,\varphi}\end{align}}}`$**
\; \dfrac{1}{r^2}\;\dfrac{\partial\,(r^2\,X_r}{\partial\,r)}}}`$**
**$`\hspace{3cm}\mathbf{\boldsymbol{+ \dfrac{1}{r\,sin\,\theta}\;\dfrac{\partial\,(sin\,\theta\,X_{\theta})}{\partial\,\theta}}}`$**
**$`\hspace{5cm}\mathbf{\boldsymbol{+ \dfrac{1}{r\,sin\,\theta}\;\dfrac{\partial\,X_{\varphi}}{\partial\,\varphi}}}`$**
<br>**$`\mathbf{\boldsymbol{\begin{align}
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment