Commit 4f252ee1 authored by Claude Meny's avatar Claude Meny

Update textbook.en.md

parent 2a7752ab
Pipeline #824 failed with stage
in 22 seconds
......@@ -53,7 +53,7 @@ To perform this I *need to know the __algebraic distance__* **$`\overline{SA_{ob
By *definition :* **$`\overline{M_T}=\dfrac{\overline{A_{ima}B_{ima}}}{\overline{A_{obj}B_{obj}}}`$**.
Its *expression for spherical refracting surface :* **$`\overline{M_T}=\dfrac{n_{ini}\cdot\overline{SA_{ima}}}{n_{fin}\cdot\overline{SA_{obj}}}`$**.
I know $`\overline{SA_{obj}}`$, $`n_{ini}$ and $n_{fin}`$, I have previously calculated $`\overline{SA_{ima}}`$, so I can calculate $`\overline{M_T}`$ and deduced $`\overline{A_{ima}B_{ima}}`$
I know $`\overline{SA_{obj}}`$, $`n_{ini}`$ and $`n_{fin}`$, I have previously calculated $`\overline{SA_{ima}}`$, so I can calculate $`\overline{M_T}`$ and deduced $`\overline{A_{ima}B_{ima}}`$
! *USEFUL* : The conjuction equation and the transverse magnification equation for a plane refracting surface are obtained by rewriting these equations for a spherical refracting surface in the limit when $`|\overline{SC}|\longrightarrow\infty`$.<br> Then we get *for a plane refracting surface :*
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment