Commit 505e60f5 authored by Claude Meny's avatar Claude Meny

Update textbook.fr.md

parent 0bd4fd94
Pipeline #13989 canceled with stage
...@@ -510,15 +510,15 @@ $`\overrightarrow{e_{\theta}}=-\sin\theta\;\overrightarrow{e_x}+\cos\theta\;\ove ...@@ -510,15 +510,15 @@ $`\overrightarrow{e_{\theta}}=-\sin\theta\;\overrightarrow{e_x}+\cos\theta\;\ove
$`\begin{align} $`\begin{align}
\dfrac{d\overrightarrow{e_{\rho}}}{dt}&=\dfrac{d}{dt}\big(\cos\theta\;\overrightarrow{e_x}+\sin\theta\;\overrightarrow{e_z}\big)\\ \dfrac{d\overrightarrow{e_{\rho}}}{dt}&=\dfrac{d}{dt}\bigg(\cos\theta\;\overrightarrow{e_x}+\sin\theta\;\overrightarrow{e_z}\bigg)\\
\\ \\
&=\Big[\dfrac{d\cos\theta}{dt}\;\overrightarrow{e_x} + \sin\theta\;\underbrace{\dfrac{d\overrightarrow{e_z}}{dt}}_{=\vec{0}}\Big]\\ &=\bigg[\dfrac{d\cos\theta}{dt}\;\overrightarrow{e_x} + \sin\theta\;\underbrace{\dfrac{d\overrightarrow{e_z}}{dt}}_{=\;\vec{0}}\bigg]\\
&\quad\quad+\bigg[\dfrac{d(-\sin\theta)}{dt}\;\overrightarrow{e_z}+\cos\theta\;\underbrace{\dfrac{d\overrightarrow{e_z}}{dt}}_{=\vec{0}}\bigg]\\ &\quad\quad+\bigg[\dfrac{d(-\sin\theta)}{dt}\;\overrightarrow{e_z}+\cos\theta\;\underbrace{\dfrac{d\overrightarrow{e_z}}{dt}}_{=\;\vec{0}}\bigg]\\
\\ \\
&=\dfrac{d\cos\theta}{d\theta}\;\underbrace{\dfrac{d\theta}{dt}}_{=\,\omega}\;\overrightarrow{e_x} &=\dfrac{d\cos\theta}{d\theta}\;\underbrace{\dfrac{d\theta}{dt}}_{=\,\omega}\;\overrightarrow{e_x}
+\dfrac{d(-\sin\theta)}{d\theta}\;\underbrace{\dfrac{d\theta}{dt}}_{=\,\omega}\;\overrightarrow{e_z}\\ +\dfrac{d(-\sin\theta)}{d\theta}\;\underbrace{\dfrac{d\theta}{dt}}_{=\,\omega}\;\overrightarrow{e_z}\\
\\ \\
&=\omega\;\Big(-\sin\theta\;\overrightarrow{e_x}+\cos\theta\;\overrightarrow{e_z}\Big)\\ &=\omega\;\big(-\sin\theta\;\overrightarrow{e_x}+\cos\theta\;\overrightarrow{e_z}\big)\\
\\ \\
&=\omega\;\overrightarrow{e_{\theta}} &=\omega\;\overrightarrow{e_{\theta}}
\end{align}`$ \end{align}`$
...@@ -526,15 +526,15 @@ $`\begin{align} ...@@ -526,15 +526,15 @@ $`\begin{align}
----------- -----------
$`\begin{align} $`\begin{align}
\dfrac{d\overrightarrow{e_{\theta}}}{dt}&=\dfrac{d}{dt}\big(-\sin\theta\;\overrightarrow{e_x}+\cos\theta\;\overrightarrow{e_z}\big)\\ \dfrac{d\overrightarrow{e_{\theta}}}{dt}&=\dfrac{d}{dt}\bigg(-\sin\theta\;\overrightarrow{e_x}+\cos\theta\;\overrightarrow{e_z}\bigg)\\
\\ \\
&=\Big[\dfrac{d(-\sin\theta)}{dt}\;\overrightarrow{e_x} - \sin\theta\;\underbrace{\dfrac{d\overrightarrow{e_z}}{dt}}_{=\vec{0}}\Big]\\ &=\bigg[\dfrac{d(-\sin\theta)}{dt}\;\overrightarrow{e_x} - \sin\theta\;\underbrace{\dfrac{d\overrightarrow{e_z}}{dt}}_{=\;\vec{0}}\bigg]\\
&\quad\quad+\bigg[\dfrac{d\cos\theta}{dt}\;\overrightarrow{e_z}+\cos\theta\;\underbrace{\dfrac{d\overrightarrow{e_z}}{dt}}_{=\vec{0}}\bigg]\\ &\quad\quad+\bigg[\dfrac{d\cos\theta}{dt}\;\overrightarrow{e_z}+\cos\theta\;\underbrace{\dfrac{d\overrightarrow{e_z}}{dt}}_{=\;\vec{0}}\bigg]\\
\\ \\
&=\dfrac{d(-\sin\theta)}{d\theta}\;\underbrace{\dfrac{d\theta}{dt}}_{=\,\omega}\;\overrightarrow{e_x} &=\dfrac{d(-\sin\theta)}{d\theta}\;\underbrace{\dfrac{d\theta}{dt}}_{=\,\omega}\;\overrightarrow{e_x}
+\dfrac{d\cos\theta}{d\theta}\;\underbrace{\dfrac{d\theta}{dt}}_{=\,\omega}\;\overrightarrow{e_z}\\ +\dfrac{d\cos\theta}{d\theta}\;\underbrace{\dfrac{d\theta}{dt}}_{=\,\omega}\;\overrightarrow{e_z}\\
\\ \\
&=\omega\;\Big(-\cos\theta\;\overrightarrow{e_x}-\sin\theta\;\overrightarrow{e_z}\Big)\\ &=\omega\;\big(-\cos\theta\;\overrightarrow{e_x}-\sin\theta\;\overrightarrow{e_z}\big)\\
\\ \\
&=-\;\omega\;\overrightarrow{e_{\rho}} &=-\;\omega\;\overrightarrow{e_{\rho}}
\end{align}`$ \end{align}`$
...@@ -558,7 +558,7 @@ $`\begin{align} ...@@ -558,7 +558,7 @@ $`\begin{align}
--------------- ---------------
$`\begin{align} $`\begin{align}
\dfrac{d^2\overrightarrow{e_{\theta}}}{dt^2}&=\dfrac{d}{dt}\Big(\underbrace{\dfrac{d\overrightarrow{e_{\rho}}}{dt}}_{=\omega\,\vec{e_{\theta}}}\Big)\\ \dfrac{d^2\overrightarrow{e_{\rho}}}{dt^2}&=\dfrac{d}{dt}\bigg(\underbrace{\dfrac{d\overrightarrow{e_{\rho}}}{dt}}_{=\omega\,\vec{e_{\theta}}}\bigg)\\
\\ \\
&=\dfrac{d}{dt}\left(\omega\,\overrightarrow{e_{\theta}}\right)\\ &=\dfrac{d}{dt}\left(\omega\,\overrightarrow{e_{\theta}}\right)\\
\\ \\
...@@ -569,6 +569,20 @@ $`\begin{align} ...@@ -569,6 +569,20 @@ $`\begin{align}
&=\dfrac{d\omega}{dt}\;\overrightarrow{e_{\theta}}\;-\;\omega^2\;\overrightarrow{e_{\rho}} &=\dfrac{d\omega}{dt}\;\overrightarrow{e_{\theta}}\;-\;\omega^2\;\overrightarrow{e_{\rho}}
\end{align}`$ \end{align}`$
---------------
$`\begin{align}
\dfrac{d^2\overrightarrow{e_{\theta}}}{dt^2}&=\dfrac{d}{dt}\bigg(\underbrace{\dfrac{d\overrightarrow{e_{\theta}}}{dt}}_{=-\omega\,\vec{e_{\rho}}}\bigg)\\
\\
&=\dfrac{d}{dt}\left(-\omega\,\overrightarrow{e_{\rho}}\right)\\
\\
&=-\dfrac{d\omega}{dt}\;\overrightarrow{e_{\rho}}\;-\;\omega\;\dfrac{d\overrightarrow{e_{\rho}}{dt}\\
\\
&=-\dfrac{d\omega}{dt}\;\overrightarrow{e_{\rho}}\;-\;\omega\;\big(\omega\;\overrightarrow{e_{\theta}}\big)\\
\\
&=\dfrac{d\omega}{dt}\;\overrightarrow{e_{\rho}}\;-\;\omega^2\;\overrightarrow{e_{\theta}}
\end{align}`$
_dynamique puis énergétique (énergie mécanique)_ _dynamique puis énergétique (énergie mécanique)_
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment