Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Courses
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
6
Issues
6
List
Board
Labels
Milestones
Merge Requests
4
Merge Requests
4
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
M3P2
Courses
Commits
50867382
Commit
50867382
authored
Dec 21, 2025
by
Claude Meny
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Update cheatsheet.es.md
parent
b6ec4922
Pipeline
#21659
canceled with stage
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
4 additions
and
4 deletions
+4
-4
cheatsheet.es.md
...-vacuum/10.maxwell-equations/20.overview/cheatsheet.es.md
+4
-4
No files found.
12.temporary_ins/90.electromagnetism-in-vacuum/10.maxwell-equations/20.overview/cheatsheet.es.md
View file @
50867382
...
...
@@ -236,7 +236,7 @@ y revolucionó así la física._
con orientación compatible con la de $
`S`
$ según la regla de la mano derecha:
*
$
`\forall \overrightarrow{r},\;`
$
*$`\mathbf{\overrightarrow{rot} \,\overrightarrow{E} = -\dfrac{\partial \overrightarrow{B}}{\partial t}}`$*
$
`\Longrightarrow \iint_S \overrightarrow{rot} \,\overrightarrow{E}\cdot\overrightarrow{dS} = \iint_S\Big(-\dfrac{\partial\overrightarrow{B}}{\partial t}\cdot\overrightarrow{dS}\Big)`
$
$
`\Longrightarrow \iint_S \overrightarrow{rot} \,\overrightarrow{E}\cdot\overrightarrow{dS} = \iint_S\Big(-\dfrac{\partial\overrightarrow{B}}{\partial t}\cdot\overrightarrow{dS}\Big)`
$
<br>
*
$
`\left.\begin{array}{l}
...
...
@@ -245,7 +245,7 @@ y revolucionó así la física._
\text{el orden derivación/integración no importa}
\end{array}\right\}`
$
$
`\Longrightarrow`
$
$
`\iint_S \overrightarrow{rot} \,\overrightarrow{E}\cdot\overrightarrow{dS} = -\dfrac{d}{dt}\Big(\iint_S\overrightarrow{B}\cdot\overrightarrow{dS}\Big)`
$
$
`\iint_S \overrightarrow{rot} \,\overrightarrow{E}\cdot\overrightarrow{dS} = -\dfrac{d}{dt}\Big(\iint_S\overrightarrow{B}\cdot\overrightarrow{dS}\Big)`
$
<br>
*
$
`\left.\begin{array}{l}
...
...
@@ -256,9 +256,9 @@ y revolucionó así la física._
**
$
`\begin{array}{l}
\\
\mathbf{\displaystyle\quad\oint_{\Gamma\leftrightarrow S} \overrightarrow{E}\cdot\overrightarrow{dl}= -\dfrac{d}{dt}\iint_S\overrightarrow{B}\cdot\overrightarrow{dS}}
\end{array}`
$
**
\end{array}`
$
**
<br>
*
Esta ecuación juega un
*papel importante en los fenómenos de inducción de Neumann*
.
*
Esta ecuación juega un
*papel importante en los fenómenos de inducción de Neumann*
.
_La cantidad_ $
`\oint_{\Gamma\leftrightarrow S} \overrightarrow{E}\cdot\overrightarrow{dl}$,
_de denominación histórica imperfecta "fuerza electromotriz (fem)", homogénea a una tensión, es el origen de una corriente_
_eléctrica que atraviesa el contorno $`
\G
amma
`$ si este representa un circuito conductor._
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment