Commit 526e84b5 authored by Claude Meny's avatar Claude Meny

Update textbook.fr.md

parent 80c97835
Pipeline #2717 failed with stage
in 23 seconds
......@@ -409,9 +409,9 @@ $`\;\Longrightarrow\left|\begin{array}{l}\overrightarrow{U}\cdot\overrightarrow{
"$`(\vec{e_1},\vec{e_2},...,\vec{e_n})`$ est une base de $`\mathcal{E}`$"
$`\quad\Longrightarrow`$
$`\quad\forall \overrightarrow{U}\in\mathcal{P}\quad \overrightarrow{U}=\sum_{i=1}^n\;U_i\cdot\vec{e_i}`$
$`\quad\forall \overrightarrow{V}\in\mathcal{P}\quad \overrightarrow{U}=\sum_{i=1}^n\;V_i\cdot\vec{e_i}`$
$`\quad\overrightarrow{U}\cdot\overrightarrow{V}=U_1\,V_1 + U_2\,V_2 + ... + U_n\,V_n = \sum_{i=1}^n\;U_i\,V_i`$
$`\displaystyle\quad\forall \overrightarrow{U}\in\mathcal{P}\quad \overrightarrow{U}=\sum_{i=1}^n\;U_i\cdot\vec{e_i}`$
$`\displaystyle\quad\forall \overrightarrow{V}\in\mathcal{P}\quad \overrightarrow{U}=\sum_{i=1}^n\;V_i\cdot\vec{e_i}`$
$`\displaystyle\quad\overrightarrow{U}\cdot\overrightarrow{V}=U_1\,V_1 + U_2\,V_2 + ... + U_n\,V_n = \sum_{i=1}^n\;U_i\,V_i`$
##### Calcul de l’angle entre 2 vecteurs dans une base orthonormée
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment