Commit 55a1d95f authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 9b9e8229
Pipeline #19522 canceled with stage
......@@ -14,50 +14,18 @@ visible: false
##### Expression de la divergence en coordonnées cartésiennes
<br>**$`\mathbf{
div\,\overrightarrow{X}}`$**$`\mathbf{\;=\dfrac{d\Phi_X}{d\tau}}`$**$`\;\mathbf{=\dfrac{\partial X_x}{\partial x}+\dfrac{\partial X_y}{\partial y}+\dfrac{\partial X_z}{\partial z}
}`$**
<br>**$`\mathbf{
div\,\overrightarrow{X}}\;\color{black}{=\;\dfrac{d\Phi_X}{d\tau}}\;
=\;\dfrac{\partial X_x}{\partial x}+\dfrac{\partial X_y}{\partial y}+\dfrac{\partial X_z}{\partial z}}`$**
<br>**$`div\,\overrightarrow{X}\;=\;\color{gray}{\dfrac{d\Phi_X}{d\tau}}\;=\;\dfrac{\partial X_x}{\partial x}+\dfrac{\partial X_y}{\partial y}+\dfrac{\partial X_z}{\partial z}
`$**
<br>**$`\mathbf{div\,\overrightarrow{X}\;=\;\color{black}{\dfrac{d\Phi_X}{d\tau}}\;=\;\dfrac{\partial X_x}{\partial x}+\dfrac{\partial X_y}{\partial y}+\dfrac{\partial X_z}{\partial z}
}`$**
##### Expression de la divergence en coordonnées cylindriques
<br>**$`\mathbf{div\,\overrightarrow{X}}`$**$`\boldsymbol{\mathbf{\;=\dfrac{d\Phi_X}{d\tau}}}`$**$`\boldsymbol{\mathbf{\;=\dfrac{1}{\rho}\;\dfrac{\partial\,(\,\rho\,X_{\rho})}{\partial\,\rho}
+\dfrac{1}{\rho}\;\dfrac{\partial\,X_{\varphi}}{\partial\,\varphi}+\dfrac{\partial\,X_{z}}{\partial\,z}}}`$**
<br>
<br>**$`div\,\overrightarrow{X}\;\color{gray}{=\;\dfrac{d\Phi_X}{d\tau}}\;=\;\dfrac{1}{\rho}\;\dfrac{\partial\,(\,\rho\,X_{\rho})}{\partial\,\rho}
+\dfrac{1}{\rho}\;\dfrac{\partial\,X_{\varphi}}{\partial\,\varphi}+\dfrac{\partial\,X_{z}}{\partial\,z}`$**
##### Expression de la divergence en coordonnées sphériques
**$`\boldsymbol{\mathbf{\begin{align}
div\,\overrightarrow{X}\color{grey{\;=\;\dfrac{d\Phi_X}{d\tau}}\,=\; &\dfrac{1}{r^2}\;\dfrac{\partial\,(r^2\,X_r}{\partial\,r}\\
\\
& \quad\quad + \dfrac{1}{r\,sin\,\theta}\;\dfrac{\partial\,(sin\,\theta\,X_{\theta})}{\partial\,\theta}\\
\\
& \quad\quad\quad\quad + \dfrac{1}{r\,sin\,\theta}\;\dfrac{\partial\,X_{\varphi}}{\partial\,\varphi}\end{align}}}`$**
<br>
**$`\mathbf{\boldsymbol{\begin{align}
*<br>*$`\mathbf{\boldsymbol{\begin{align}
div\,\overrightarrow{X}\color{gray}{\;=\dfrac{d\Phi_X}{d\tau}}\,= &\dfrac{1}{r^2}\;\dfrac{\partial\,(r^2\,X_r}{\partial\,r}\\
& \quad\quad + \dfrac{1}{r\,sin\,\theta}\;\dfrac{\partial\,(sin\,\theta\,X_{\theta})}{\partial\,\theta}\\
& \quad\quad\quad\quad + \dfrac{1}{r\,sin\,\theta}\;\dfrac{\partial\,X_{\varphi}}{\partial\,\varphi}\end{align}}}`$**
<br>
**$`\mathbf{\boldsymbol{\begin{align}
div\,\overrightarrow{X}\,= &\dfrac{1}{r^2}\;\dfrac{\partial\,(r^2\,X_r}{\partial\,r}\\
& \quad\quad + \dfrac{1}{r\,sin\,\theta}\;\dfrac{\partial\,(sin\,\theta\,X_{\theta})}{\partial\,\theta}\\
& \quad\quad\quad\quad + \dfrac{1}{r\,sin\,\theta}\;\dfrac{\partial\,X_{\varphi}}{\partial\,\varphi}\end{align}}}`$**
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment