Commit 592d0ed3 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 641e5d7a
Pipeline #15574 canceled with stage
...@@ -64,11 +64,11 @@ $`\begin{align} U(&x,t) = U_1(x,t) + U_2(x,t) \\ ...@@ -64,11 +64,11 @@ $`\begin{align} U(&x,t) = U_1(x,t) + U_2(x,t) \\
&\\ &\\
&=A\;\big[\,cos(\underbrace{kx - \omega t}_{\text{ posons }\\ kx - \omega t \,=\, \alpha} + \varphi_1) + cos(\underbrace{kx - \omega t}_{=\; \alpha} + \varphi_1)\,\big] &=A\;\big[\,cos(\underbrace{kx - \omega t}_{\text{ posons }\\ kx - \omega t \,=\, \alpha} + \varphi_1) + cos(\underbrace{kx - \omega t}_{=\; \alpha} + \varphi_1)\,\big]
&\\ &\\
&=A\;\big[\,cos\Big(alpha + \dfrac{\varphi_1+\varphi_1}{2} + \dfrac{\varphi_2-\varphi_2}{2}\Big) \\ &=A\;\big[\,cos\Big(\alpha + \dfrac{\varphi_1+\varphi_1}{2} + \dfrac{\varphi_2-\varphi_2}{2}\Big) \\
&\quad\quad\quad + \,cos\Big(\alpha + \dfrac{\varphi_2+\varphi_2}{2} + \dfrac{\varphi_1-\varphi_1}{2}\Big)\,\Big]\\ &\quad\quad\quad + \,cos\Big(\alpha + \dfrac{\varphi_2+\varphi_2}{2} + \dfrac{\varphi_1-\varphi_1}{2}\Big)\,\Big]\\
&\\ &\\
&=A\;\big[\,cos\Big(\underbrace{alpha + \dfrac{\varphi_1+\varphi_2}{2}}_{\alpha '} + \dfrac{\varphi_1-\varphi_2}{2}\Big) \\ &=A\;\big[\,cos\Big(\underbrace{\alpha + \dfrac{\varphi_1+\varphi_2}{2}}_{\alpha '} + \dfrac{\varphi_1-\varphi_2}{2}\Big) \\
&\quad\quad\quad + \,cos\Big(\underbrace{\alpha + \dfrac{\varphi_1+\varphi_2}{2}}_{\alpha + \dfrac{\varphi_1+\varphi_2}{2} = \alpha '} - \dfrac{\varphi_1-\varphi_1}{2}\Big)\,\Big]\\ &\quad\quad\quad + \,cos\Big(\underbrace{\alpha + \dfrac{\varphi_1+\varphi_2}{2}}_{\text{nous avons posé }\\ \alpha + (\varphi_1+\varphi_2)/2 = \alpha '} - \dfrac{\varphi_1-\varphi_1}{2}\Big)\,\Big]\\
&\\ &\\
\end{align}`$ \end{align}`$
* L'onde résultante $`U = U_1 + U_2`$ : * L'onde résultante $`U = U_1 + U_2`$ :
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment