Commit 5bfcf604 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent ca90c6c0
Pipeline #15701 canceled with stage
......@@ -344,14 +344,6 @@ $`\forall \alpha \in \mathbb{R}\;,\,`$ **$`\large{exp{\,\alpha} = cos \,\alpha +
* soit en **notation complexe** :
1D : **$`\quad\large{\boldsymbol{\mathbf{\underline{U}(x,t)=A\cdot e^{\,i\,(\omega t - k x + \varphi)}}}}`$**
<br>
3D : $`\begin{align}
\mathbf{\color{brown}{\quad\underline{U}(x,t)&=A\cdot e^{\,i\,(\omega t - \vec{k}\cdot\vec{r} + \varphi)} }}\\
&=A\cdot e^{\,i\,(\omega t - \vec{k}\cdot\vec{r})}\cdot e^{\,i\varphi)}\\
&=A\cdot e^{\,i\varphi)}\cdot e^{\,i\,(\omega t - \vec{k}\cdot\vec{r})}\\
&=\mathbf{\color{brown}{\underline{A}\cdot e^{\,i\,(\omega t - \vec{k}\cdot\vec{r})} }}\\
&\quad\quad\text{avec }\mathbf{\color{blue}{\underline{A}=A\; e^{\,i\varphi} }}\\
&\quad\quad\quad\color{blue}{\text{amplitude complexe}}\end{align}`$
3D : **$`\quad\boldsymbol{\mathbf{\large{\underline{U}(\vec{r},t) &=A\cdot e^{\,i\,(\omega t - \vec{k}\cdot\vec{r} + \varphi)}}}}`$**
$`\quad\quad\quad\ =A\cdot e^{\,i\,(\omega t - \vec{k}\cdot\vec{r})}\cdot e^{\,i\varphi}`$
$`\quad\quad\quad\ =A\cdot e^{\,i\varphi)}\cdot e^{\,i\,(\omega t - \vec{k}\cdot\vec{r})}`$
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment