Commit 5f969ecb authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 60c395a5
Pipeline #12761 canceled with stage
......@@ -144,18 +144,19 @@ $`\Longrightarrow`$
* *Maxwell-Faraday* :
À tout instant t, et pour toute surface fermée $`S`$ :
À tout instant t,
et pour toute surface orientée ouverte $`S`$ délimitant un contour $`\Gamma`$ orienté compatible :
* $`\forall \overrightarrow{r}, \overrightarrow{rot} \,\overrightarrow{E} = -\dfrac{\partial \overrightarrow{B}}{\partial t}`$
$`\Longrightarrow \oiint_S \overrightarrow{rot} \,\overrightarrow{E}\cdot\overrightarrow{dS} = \oiint_S\Big(-\dfrac{\partial \big(\overrightarrow{B}\cdot\overrightarrow{dS}\big)}{\partial t}\Big)`$
$`\Longrightarrow \iint_S \overrightarrow{rot} \,\overrightarrow{E}\cdot\overrightarrow{dS} = \iint_S\Big(-\dfrac{\partial \big(\overrightarrow{B}\cdot\overrightarrow{dS}\big)}{\partial t}\Big)`$
* $`\left.\begin{array}{l}
\oiint_S \overrightarrow{rot} \,\overrightarrow{E}\cdot\overrightarrow{dS} = \oiint_S\Big(-\dfrac{\partial \big(\overrightarrow{B}\cdot\overrightarrow{dS}\big)}{\partial t}\Big) \\
\iint_S \overrightarrow{rot} \,\overrightarrow{E}\cdot\overrightarrow{dS} = \iint_S\Big(-\dfrac{\partial \big(\overrightarrow{B}\cdot\overrightarrow{dS}\big)}{\partial t}\Big) \\
\text{Newton : espace et temps indépendants}
\end{array}\right\}
\Longrightarrow`$
$`\oiint_S \overrightarrow{rot} \,\overrightarrow{E}\cdot\overrightarrow{dS} = -\dfrac{\partial}{\partial t}\Big(\oiint_{\Ltau}\overrightarrow{B}\cdot\overrightarrow{dS}\Big)`$
$`\iint_S \overrightarrow{rot} \,\overrightarrow{E}\cdot\overrightarrow{dS} = -\dfrac{\partial}{\partial t}\Big(\iint_S\overrightarrow{B}\cdot\overrightarrow{dS}\Big)`$
$`\left.\begin{array}{l}
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment