Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Courses
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
6
Issues
6
List
Board
Labels
Milestones
Merge Requests
4
Merge Requests
4
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
M3P2
Courses
Commits
60429ed8
Commit
60429ed8
authored
Sep 27, 2022
by
Claude Meny
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Update cheatsheet.fr.md
parent
bbe97760
Pipeline
#13530
canceled with stage
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
18 additions
and
10 deletions
+18
-10
cheatsheet.fr.md
...70.combinaisons-of-operators/20.overview/cheatsheet.fr.md
+18
-10
No files found.
12.temporary_ins/08.grad-div-rot/70.combinaisons-of-operators/20.overview/cheatsheet.fr.md
View file @
60429ed8
...
@@ -9,21 +9,30 @@ visible: false
...
@@ -9,21 +9,30 @@ visible: false
Le Laplacien vectoriel s'écrit, en fonction des opérateurs $
`\overrightarrow{grad}`
$, $
`div`
$ et opérateurs $
`\overrightarrow{rot}`
$ :
Le Laplacien vectoriel s'écrit, en fonction des opérateurs $
`\overrightarrow{grad}`
$, $
`div`
$ et opérateurs $
`\overrightarrow{rot}`
$ :
$
`\large{mathbf{\Delta\;\overrightarrow{E}=\;\overrightarrow{grad}\big(div\;\overrightarrow{E}\big)
$
`\large{
\
mathbf{\Delta\;\overrightarrow{E}=\;\overrightarrow{grad}\big(div\;\overrightarrow{E}\big)
-\
overrightarrow{rot}\big(-\
overrightarrow{rot}\,\overrightarrow{E}}}`
$
-\
overrightarrow{rot}\big(-\
overrightarrow{rot}\,\overrightarrow{E}}}`
$
---ok
---ok
Vérifions sont expression en coordonnées cartésiennes :
Vérifions sont expression en coordonnées cartésiennes :
#### Quelle combinaison est nécessaire pour montrer qu'un champ vectoriel se propage ?
*
Un champ vectoriel $
`\overrightarrow{U}`
$ se propage s'il vérifie l'équation d'onde vectorielle.
<br>
L'écriture générale de cette équation utilise l'opérateur lagrangien vecoriel et s'écrit :
<br>
$
`\Delta\overrightarrow{U}-\dfrac{1}{\mathscr{v}^2}\dfrax{\partial U^2}{\partial t^2}`
$
$
`\color{blue}{\overrightarrow{rot}\,\overrightarrow{E}=
$
`\color{blue}{\overrightarrow{rot}\,\overrightarrow{E}=
\
begin{array}{l}\left(
\
left(\begin{array}{l}
\dfrac{\partial E_z}{\partial y}-\dfrac{\partial E_y}{\partial z}\\
\dfrac{\partial E_z}{\partial y}-\dfrac{\partial E_y}{\partial z}\\
\dfrac{\partial E_x}{\partial z}-\dfrac{\partial E_z}{\partial x}\\
\dfrac{\partial E_x}{\partial z}-\dfrac{\partial E_z}{\partial x}\\
\dfrac{\partial E_y}{\partial x}-\dfrac{\partial E_x}{\partial y}
\dfrac{\partial E_y}{\partial x}-\dfrac{\partial E_x}{\partial y}
\right)\end{array}}`
$
\end{array}\right)}
\overrightarrow{rot}\big(-\ overrightarrow{rot}\,\overrightarrow{E}=
$
`\overrightarrow{rot}\big(-\ overrightarrow{rot}\,\overrightarrow{E}=
\begin{array}{l}\left[
\begin{array}{l}\left[
dfrac{\partial}{\partial y}\left(
dfrac{\partial}{\partial y}\left(
\color{blue}{\dfrac{\partial E_y}{\partial x}-\dfrac{\partial E_x}{\partial y}}
\color{blue}{\dfrac{\partial E_y}{\partial x}-\dfrac{\partial E_x}{\partial y}}
...
@@ -42,13 +51,12 @@ dfrac{\partial}{\partial y}\left(
...
@@ -42,13 +51,12 @@ dfrac{\partial}{\partial y}\left(
\right)
\right)
-\dfrac{\partial}{\partial y}\left(
-\dfrac{\partial}{\partial y}\left(
\color{blue}{\dfrac{\partial E_z}{\partial y}-\dfrac{\partial E_y}{\partial z}}
\color{blue}{\dfrac{\partial E_z}{\partial y}-\dfrac{\partial E_y}{\partial z}}
\right)
\right)\end{array}\right]`
$
\end{array}\right]`
$
---ok
---ok
$
`\color{blue}{\overrightarrow{rot}\,\overrightarrow{E}=
$
`\color{blue}{\overrightarrow{rot}\,\overrightarrow{E}=
\
begin{array}{l}\left(
\
left(\begin{array}{l}
\dfrac{\partial^2 E_y}{\partial y\,\partial x}
\dfrac{\partial^2 E_y}{\partial y\,\partial x}
-\dfrac{\partial^2 E_x}{\partial y^2}
-\dfrac{\partial^2 E_x}{\partial y^2}
-\dfrac{\partial^2 E_x}{\partial z^2}
-\dfrac{\partial^2 E_x}{\partial z^2}
...
@@ -61,5 +69,5 @@ $`\color{blue}{\overrightarrow{rot}\,\overrightarrow{E}=
...
@@ -61,5 +69,5 @@ $`\color{blue}{\overrightarrow{rot}\,\overrightarrow{E}=
-\dfrac{\partial^2 E_x}{\partial x^2}
-\dfrac{\partial^2 E_x}{\partial x^2}
-\dfrac{\partial^2 E_z}{\partial y^2}
-\dfrac{\partial^2 E_z}{\partial y^2}
+\dfrac{\partial^2 E_z}{\partial y\,\partial z} \\
+\dfrac{\partial^2 E_z}{\partial y\,\partial z} \\
\
right)\end{array}
}`
$
\
end{array}\right)
}`
$
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment