Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Courses
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
6
Issues
6
List
Board
Labels
Milestones
Merge Requests
4
Merge Requests
4
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
M3P2
Courses
Commits
63179cae
Commit
63179cae
authored
Dec 05, 2023
by
Claude Meny
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Update cheatsheet.fr.md
parent
a475afde
Pipeline
#17613
canceled with stage
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
6 additions
and
6 deletions
+6
-6
cheatsheet.fr.md
...m/30.maxwell-electromagnetism-potentials/cheatsheet.fr.md
+6
-6
No files found.
12.temporary_ins/90.electromagnetism-in-vacuum/30.maxwell-electromagnetism-potentials/cheatsheet.fr.md
View file @
63179cae
...
@@ -168,9 +168,9 @@ _Non unicité du potentiel $`\big(V\,,\overrightarrow{A}\big)`$_
...
@@ -168,9 +168,9 @@ _Non unicité du potentiel $`\big(V\,,\overrightarrow{A}\big)`$_
créé un
**champ électromagnétique $`(\overrightarrow{E}\,,\overrightarrow{B})`$**
qui
créé un
**champ électromagnétique $`(\overrightarrow{E}\,,\overrightarrow{B})`$**
qui
vérifie les équations de maxwell.
vérifie les équations de maxwell.
*
Il
existe un potentiel $
`(V\,,\overrightarrow{A})`
$
tel que :
*
Il
**existe**
un potentiel
**$`(V\,,\overrightarrow{A})`$**
tel que :
$
`\overrightarrow{B}=\overrightarrow{rot}\,\overrightarrow{A}`
$
*$`\overrightarrow{B}=\overrightarrow{rot}\,\overrightarrow{A}`$*
$
`\overrightarrow{E}=-\,\overrightarrow{grad}\,V-\dfrac{\partial \overrightarrow{A}}{\partial t`
$
*$`\overrightarrow{E}=-\,\overrightarrow{grad}\,V-\dfrac{\partial \overrightarrow{A}}{\partial t}`$*
*
En tout point de l'espace et à chaque instant le rotationnel d'un champ vectoriel $
`\overrightarrow{U}`
$
*
En tout point de l'espace et à chaque instant le rotationnel d'un champ vectoriel $
`\overrightarrow{U}`
$
s'exprime par dérivées partielles de $
`\overrightarrow{U}`
$ par rapport à des coordonnées spatiales.
s'exprime par dérivées partielles de $
`\overrightarrow{U}`
$ par rapport à des coordonnées spatiales.
...
@@ -181,13 +181,13 @@ _Non unicité du potentiel $`\big(V\,,\overrightarrow{A}\big)`$_
...
@@ -181,13 +181,13 @@ _Non unicité du potentiel $`\big(V\,,\overrightarrow{A}\big)`$_
*
$
`\overrightarrow{rot}(\overrightarrow{U}+\overrightarrow{V})
*
$
`\overrightarrow{rot}(\overrightarrow{U}+\overrightarrow{V})
=\overrightarrow{rot}\,\overrightarrow{U}\,+\,`
\o
verrightarrow{rot}
\,\o
verrightarrow{V}
`$*.
=\overrightarrow{rot}\,\overrightarrow{U}\,+\,`
\o
verrightarrow{rot}
\,\o
verrightarrow{V}
`$*.
* L'identité *$`
\
o
verrightarrow{rot}
\,\o
verrightarrow{grad}
\,\p
hi=
\o
verrightarrow{0
}
`$* vérifiée
* L'identité *$`
\
m
athbf{
\o
verrightarrow{rot}
\,\o
verrightarrow{grad}
\,\p
hi=
\o
verrightarrow{0}
}
`$* vérifiée
en tout point de l'espace et à chaque instant par tout champ scalaire $`
\p
hi
`$ implique que :
en tout point de l'espace et à chaque instant par tout champ scalaire $`
\p
hi
`$ implique que :
<br>
<br>
**si $`
\
o
verrightarrow{rot}
\,\o
verrightarrow{A} =
\m
athbf{
\o
verrightarrow{B}}
`$**
**si $`
\
m
athbf{
\o
verrightarrow{rot}
\,\o
verrightarrow{A} =
\o
verrightarrow{B}}
`$**
<br>
<br>
**alors**
**alors**
**$`
\m
athbf{
\o
verrightarrow{rot}
\,\B
ig(
\o
verrightarrow{A
\,
+
\,\o
verrightarrow{grad}
\p
hi
\B
ig)}
`$**
**$`
\m
athbf{
\o
verrightarrow{rot}
\,\B
ig(
\o
verrightarrow{A
}
\,
+
\,\o
verrightarrow{grad}
\p
hi
\B
ig)}
`$**
$`
\q
uad =
\o
verrightarrow{rot}
\,\o
verrightarrow{A}
\,
+
\,
$`
\q
uad =
\o
verrightarrow{rot}
\,\o
verrightarrow{A}
\,
+
\,
\u
nderbrace{
\o
verrightarrow{rot}
\,\o
verrightarrow{grad}
\p
hi}_{
\c
olor{blue}{=
\;
0}}
`$
\u
nderbrace{
\o
verrightarrow{rot}
\,\o
verrightarrow{grad}
\p
hi}_{
\c
olor{blue}{=
\;
0}}
`$
$`
\q
uad =
\o
verrightarrow{rot}
\,\o
verrightarrow{A}
`$
$`
\q
uad =
\o
verrightarrow{rot}
\,\o
verrightarrow{A}
`$
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment