* $`\displaystyle\oint_{\mathcal{\Gamma}_A} \overrightarrow{B}\cdot\overrightarrow{dl}`$`$ = 2\pi \rho_M\,h\, E`$ , avec $`\Phi_E`$ le flux de $`\overrightarrow{E}`$ à travers $`{\mathcal{S}_G}`$
sont *commun à toutes les distributions cylindriques* de courants à symétrie cylindrique invariantes par translation selon $`Oz`$.
* Le **calcul de $`Q_{int}`$** puis **de $`\overrightarrow{E}`$** nécessitent de *connaître l'expression mathématique pour $`\dens`$* en chaque point de l'espace.
<br>
$`\Longrightarrow`$ *différentes distributions de charges sont étudiées* dans la suite.
##### Calcul de la charge $`Q_{int}`$
* $`Q_{int}`$ est la **charge contenue à l'intérieur de $`\mathbf{\mathcal{S}_G}`$**.
* **$`\displaystyle\mathbf{Q_{int}=\iiint_{\Ltau_G \rightarrow\mathcal{S}_G} \dens\; d\tau}`$**, avec :
* **$`\mathbf{\tau_G}`$** *volume intérieur* à $`\mathbf{\mathcal{S}_G}`$.
* **$`\mathbf{d\tau}`$** est l'*élément de volume*.
##### Calcul de $`\overrightarrow{E}`$
* Il *résulte de la synthèse des résultats* précédents.
* L'**égalité entre les deux termes** du théorème de Gauss *donne la composante $`E`$* du champ $`\overrightarrow{E}=E\;\overrightarrow{e_{\rho}}`$ en tout point de l'espace :