Commit 68dc0a43 authored by Claude Meny's avatar Claude Meny

Update textbook.fr.md

parent acdd1bb6
Pipeline #13820 canceled with stage
...@@ -154,8 +154,22 @@ $`\mathcal{S}=\displaystyle\int_{t_1}^{t_2}\mathcal{L}\big(x_i\,,\,\dpt{x}_i\big ...@@ -154,8 +154,22 @@ $`\mathcal{S}=\displaystyle\int_{t_1}^{t_2}\mathcal{L}\big(x_i\,,\,\dpt{x}_i\big
$`\delta \mathcal{S}=\displaystyle\int_{t_1}^{t_2}\left( \dfrac{\partial\mathcal{L}}{\partial x_i} \delta x_i $`\delta \mathcal{S}=\displaystyle\int_{t_1}^{t_2}\left( \dfrac{\partial\mathcal{L}}{\partial x_i} \delta x_i
+\dfrac{\partial\mathcal{L}}{\partial \dpt{x}_i} \delta \dpt{x}_i\right)\,dt`$ +\dfrac{\partial\mathcal{L}}{\partial \dpt{x}_i} \delta \dpt{x}_i\right)\,dt`$
<details markdown=1>
<summary>intégration par partie de $`\dfrac{\partial\mathcal{L}}{\partial \dpt{x}_i} \delta \dpt{x}_i`$
</summary>
$u(\alpha)`$ et $v(\alpha)`$
$`(uv)'=u'v+uv'`$
$`uv'=(uv)'-u'v`$
$`\int_{\alpha=a}^{\alpha=b} u(\alpha)\cdot\dfrac{dv}{d\alpha}\,d\alpha
=\int_{\alpha=a}^{\alpha=b}\dfrac{d uv}{d\alpha}\,d\alpha
-\int_{\alpha=a}^{\alpha=b}\dfrac{d u}{d\alpha}\cdotv(\alpha)\,d\alpha`$
</details>
intégration par partie intégration par partie
$`(uv)'=
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment