Commit 6b5f9985 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 6f525a50
Pipeline #15610 canceled with stage
...@@ -57,9 +57,10 @@ $`\newcommand{\ddpt}[1]{\overset{\large\bullet\bullet}{#1}}`$ ...@@ -57,9 +57,10 @@ $`\newcommand{\ddpt}[1]{\overset{\large\bullet\bullet}{#1}}`$
* Son amplitude est : * Son amplitude est :
$`\begin{align} A_{onde} &= \left| \,2\,A\cdot cos\Big(\dfrac{\varphi_1 - \varphi_2}{2} \Big) \,\right|\\ $`\begin{align} A_{onde} &= \left| \,2\,A\cdot cos\Big(\dfrac{\varphi_1 - \varphi_2}{2} \Big) \,\right|\\
&\\ &\\
&=\sqrt{2\,A\cdot \underbrace{cos\Big(\dfrac{\varphi_1 - \varphi_2}{2}\Big)\,cos\Big(\dfrac{\varphi_1 - \varphi_2}{2}\Big)}{toto} &=\sqrt{4\,A^2 \cdot cos\Big(\dfrac{\varphi_1 - \varphi_2}{2}\Big)\,cos\Big(\dfrac{\varphi_1 - \varphi_2}{2}\Big)}
\end{align}`$ \end{align}`$
\underbrace{ {toto}
{\left.\begin{align} cos(a+b)=cos(a)cos(b)-sin(a)sin(b)\\ {\left.\begin{align} cos(a+b)=cos(a)cos(b)-sin(a)sin(b)\\
cos(a-b)=cos(a)cos(b)+-sin(a)sin(b)\end{align}\right\}\Rightarrow\\ cos(a-b)=cos(a)cos(b)+-sin(a)sin(b)\end{align}\right\}\Rightarrow\\
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment