Commit 6f525a50 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent a707d949
Pipeline #15609 canceled with stage
...@@ -55,9 +55,10 @@ $`\newcommand{\ddpt}[1]{\overset{\large\bullet\bullet}{#1}}`$ ...@@ -55,9 +55,10 @@ $`\newcommand{\ddpt}[1]{\overset{\large\bullet\bullet}{#1}}`$
* Son amplitude est : * Son amplitude est :
$`\begin{align} A_{onde résult.} &= \left| \,2\,A\cdot cos\Big(\dfrac{\varphi_1 - \varphi_2}{2} \Big) \,\right|\\ $`\begin{align} A_{onde} &= \left| \,2\,A\cdot cos\Big(\dfrac{\varphi_1 - \varphi_2}{2} \Big) \,\right|\\
&\\ &\\
&=\sqrt{2\,A\cdot \underbrace{cos\Big(\dfrac{\varphi_1 - \varphi_2}{2}\Big)\,cos\Big(\dfrac{\varphi_1 - \varphi_2}{2}\Big)}{toto}\end{align}`$ &=\sqrt{2\,A\cdot \underbrace{cos\Big(\dfrac{\varphi_1 - \varphi_2}{2}\Big)\,cos\Big(\dfrac{\varphi_1 - \varphi_2}{2}\Big)}{toto}
\end{align}`$
{\left.\begin{align} cos(a+b)=cos(a)cos(b)-sin(a)sin(b)\\ {\left.\begin{align} cos(a+b)=cos(a)cos(b)-sin(a)sin(b)\\
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment