* Ainsi l'**onde sinusoïdale plane progressive** peut s'écrire :
* Ainsi l'**onde sinusoïdale plane progressive** peut s'écrire :
<br>
<br>
* soit en *notation réelle* :
* soit en *notation réelle* :
<br>
1D : *$`\;\large{\boldsymbol{\mathbf{U(x,t)=A\cdot cos\,(\omega t - k x + \varphi)}}}`$*
1D : *$`\;\large{\boldsymbol{\mathbf{U(x,t)=A\cdot cos\,(\omega t - k x + \varphi)}}}`$*
3D : *$`\;\large{\boldsymbol{\mathbf{U(\vec{r},t)=A\cdot cos\,(\omega t - \vec{k}\cdot\vec{r} + \varphi)}}}`$*
3D : *$`\;\large{\boldsymbol{\mathbf{U(\vec{r},t)=A\cdot cos\,(\omega t - \vec{k}\cdot\vec{r} + \varphi)}}}`$*
* soit en **notation complexe** :
* soit en **notation complexe** :
<br>
1D : **$`\;\large{\boldsymbol{\mathbf{\underline{U}(x,t)}}}`$** $`\;= A\cdot \underbrace{exp\,[\,i\,(\omega t - k x + \varphi}_{\color{blue}{exp(a+b) = exp(a)\times exp(b)})\,]}`$
1D : **$`\;\large{\boldsymbol{\mathbf{\underline{U}(x,t)}}}`$** $`\;= A\cdot \underbrace{exp\,[\,i\,(\omega t - k x + \varphi}_{\color{blue}{exp(a+b) = exp(a)\times exp(b)})\,]}`$
<br>
<br>
$`\;\quad\quad\quad\quad\quad =\underbrace{A\;e^{\,i\,\varphi}}_{\color{blue}{\underline{A}=A\; e^{\,i\,\varphi}}}\cdot exp\,[\,i\,(\omega t - kx)\,]`$
$`\;\quad\quad\quad\quad\quad =\underbrace{A\;e^{\,i\,\varphi}}_{\color{blue}{\underline{A}=A\; e^{\,i\,\varphi}}}\cdot exp\,[\,i\,(\omega t - kx)\,]`$