Commit 7379c8bd authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent a2665d44
Pipeline #13243 canceled with stage
...@@ -459,7 +459,9 @@ $`\left.\begin{array}{l} ...@@ -459,7 +459,9 @@ $`\left.\begin{array}{l}
* Le **travail d'une force** a la *dimension d'une énergie*. * Le **travail d'une force** a la *dimension d'une énergie*.
* La **travail élémentaire** *de la force conservative* s'écrit : * La **travail élémentaire** *de la force conservative* $`\overrightarrow{F}_X`$ qui s'exerce
sur une particule de sensibilité $`\alpha`$ constante à un champ de force $`\overrightarrow{X}`$
lors d'un déplacement élémentaire $`\overrightarrow{dl}`$ s'écrit :
<br> <br>
$`\begin{align} $`\begin{align}
\displaystyle\color{brown}{\large{\mathbf{\overrightarrow{F}_X\cdot\overrightarrow{dl}}}} & =\alpha\,\overrightarrow{X}\cdot\overrightarrow{dl}\\ \displaystyle\color{brown}{\large{\mathbf{\overrightarrow{F}_X\cdot\overrightarrow{dl}}}} & =\alpha\,\overrightarrow{X}\cdot\overrightarrow{dl}\\
...@@ -467,21 +469,15 @@ $`\begin{align} ...@@ -467,21 +469,15 @@ $`\begin{align}
& =-\,\alpha\,\underbrace{\big(\overrightarrow{grad}_X\,\phi_X\cdot\overrightarrow{dl}\big)}_{=\;d\phi\;,\text{ dfn de } \overrightarrow{grad}\,\phi}\\ & =-\,\alpha\,\underbrace{\big(\overrightarrow{grad}_X\,\phi_X\cdot\overrightarrow{dl}\big)}_{=\;d\phi\;,\text{ dfn de } \overrightarrow{grad}\,\phi}\\
& =-\,\alpha\;d\phi_X \\ & =-\,\alpha\;d\phi_X \\
\\ \\
& \color{blue}{\large{\mathbf{\;=-\;d\mathcal{E}_X^{pot}}}}\\ & \color{blue}{\large{\mathbf{\;-\,d(\alpha\;\phi_X)}}} \\
\\
& \color{brown}{\large{\mathbf{\;=-\;d\mathcal{E}_X^{pot}}}}\\
\end{align}`$ \end{align}`$
* Par défintion, l'**énergie potentielle** de la particule de sensibilité $`\alpha`$ * Par défintion, l'**énergie potentielle** de la particule dans ce champ de force, noté $`\mathcal{E}_X^{pot}`$ est :
à champ de force conservatif $`\overrightarrow{X}`$ dérivant d'un potentiel $`\phi_X`$, est :
<br> <br>
$`\color{brown}{\large{\mathbf{\mathscr{E}_X^{pot}=\alpha\;\phi_X}}}`$ $`\color{brown}{\large{\mathbf{\mathscr{E}_X^{pot}=\alpha\;\phi_X}}}`$
<br>
La **valeur de l'énergie potentielle** d'une particule en un point de l'espace n'est qu'un *intermédiaire de calcul*.
Elle n'a **pas de réalité physique**, puisqu'il existe une infinité de potentiels $`\phi_X`$ qui vérifient
$`\overrightarrow{X}=-\;\overrightarrow{\phi_x}`$, et donc une infinité de valeurs possibles pour
$`\mathcal{E}_X^{pot}`$.
<br>
Seules la variation élémentaire $`d\mathcal{E}_X^{pot}`$ de l'énergie potentielle lors
d'un déplacement élémentaire $`\overrightarrow{dl}`$, comme la variation d'énergie potentielle $`\Large{\delta}`$
!!!! *ATTENTION* : !!!! *ATTENTION* :
!!!! !!!!
...@@ -548,7 +544,9 @@ $`\begin{align} ...@@ -548,7 +544,9 @@ $`\begin{align}
& =m\,\left(\dfrac{d\overrightarrow{\mathscr{v}}}{dt}\cdot\overrightarrow{\mathscr{v}}\right)\,dt\\ & =m\,\left(\dfrac{d\overrightarrow{\mathscr{v}}}{dt}\cdot\overrightarrow{\mathscr{v}}\right)\,dt\\
& =m\,\left(\dfrac{1}{2}\,\dfrac{d\big(\overrightarrow{\mathscr{v}}\cdot\overrightarrow{\mathscr{v}}\big)}{dt}\right)\,dt\\ & =m\,\left(\dfrac{1}{2}\,\dfrac{d\big(\overrightarrow{\mathscr{v}}\cdot\overrightarrow{\mathscr{v}}\big)}{dt}\right)\,dt\\
& =m\,\left(\dfrac{1}{2}\,\dfrac{d\,\mathscr{v}^2}{dt}\right)\,dt\\ & =m\,\left(\dfrac{1}{2}\,\dfrac{d\,\mathscr{v}^2}{dt}\right)\,dt\\
& \color{brown}{\mathbf{\large{=d\left(\dfrac{m\,\mathscr{v}^2}{2}\right)}}}\\ & \color{blue}{\mathbf{\large{=d\left(\dfrac{m\,\mathscr{v}^2}{2}\right)}}}\\
\end{align}`$
& \color{brown}{\mathbf{\mathcal{E}^{cin}}}\\
\end{align}`$ \end{align}`$
* Par définition, l'**énergie cinétique**, de notation **$`\mathbf{\mathcal{E}^{cin}}`$** est : * Par définition, l'**énergie cinétique**, de notation **$`\mathbf{\mathcal{E}^{cin}}`$** est :
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment