Commit 78ef0477 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 474cf161
Pipeline #15623 canceled with stage
......@@ -57,14 +57,14 @@ $`\newcommand{\ddpt}[1]{\overset{\large\bullet\bullet}{#1}}`$
* Son amplitude est :
$`\begin{align} A_{onde} &= \left| \,2\,A\cdot cos\Big(\dfrac{\varphi_1 - \varphi_2}{2} \Big) \,\right|\\
&\\
&=\sqrt{4\,A^2 \cdot cos\Big(\dfrac{\varphi_1 - \varphi_2}{2}\Big)\,cos\Big(\dfrac{\varphi_1 - \varphi_2}{2}\Big)}
&=\sqrt{4\,A^2 \cdot cos^2\Big(\dfrac{\varphi_1 - \varphi_2}{2}\Big)}
\end{align}`$
<br>
$`\color{blue}{\scriptsize{\left.\begin{align} \quad\quad &cos(a+b)=cos(a)cos(b)-sin(a)sin(b)\\
&cos(a-b)=cos(a)cos(b)+-sin(a)sin(b)\end{align}
\right\}\Longrightarrow\\
\quad\quad\quad\quad cos^2(a)=cos(a)cos(a)=\frac{1}{2}[cos(a+a)+cos(a-a)]\\
\quad\quad\quad\quad=\frac{1}{2}[1 + cos(2a)]}}`$
\quad\quad cos^2(a)=cos(a)cos(a)=\frac{1}{2}[cos(a+a)+cos(a-a)]\\
\quad\quad\quad=\frac{1}{2}[1 + cos(2a)]}}`$
$`\begin{align} A_{onde} &= \left| \,2\,A\cdot cos\Big(\dfrac{\varphi_1 - \varphi_2}{2} \Big) \,\right|\\
&\\
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment