Commit 474cf161 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 325b3bb9
Pipeline #15622 canceled with stage
...@@ -70,9 +70,9 @@ $`\newcommand{\ddpt}[1]{\overset{\large\bullet\bullet}{#1}}`$ ...@@ -70,9 +70,9 @@ $`\newcommand{\ddpt}[1]{\overset{\large\bullet\bullet}{#1}}`$
&\\ &\\
&=\sqrt{4\,A^2 \cdot \underbrace{cos\Big(\dfrac{\varphi_1 - \varphi_2}{2}\Big)\,cos\Big(\dfrac{\varphi_1 - \varphi_2}{2}\Big)} &=\sqrt{4\,A^2 \cdot \underbrace{cos\Big(\dfrac{\varphi_1 - \varphi_2}{2}\Big)\,cos\Big(\dfrac{\varphi_1 - \varphi_2}{2}\Big)}
_{\left.\begin{align} cos(a+b)=cos(a)cos(b)-sin(a)sin(b)\\ _{\left.\begin{align} cos(a+b)=cos(a)cos(b)-sin(a)sin(b)\\
cos(a-b)=cos(a)cos(b)+-sin(a)sin(b)\end{align}\right\}\Rightarrow\\ cos(a-b)=cos(a)cos(b)+-sin(a)sin(b)\end{align}\right\}\Rightarrow\\
cos(a)cos(a)=cos^2(a)=\frac{1}{2}[cos(a+a)+cos(a-a)]\\ &cos(a)cos(a)=cos^2(a)=\frac{1}{2}[cos(a+a)+cos(a-a)]\\
=\frac{1}{2}[1 + cos(2a)]} &=\frac{1}{2}[1 + cos(2a)]}
}\end{align}`$ }\end{align}`$
\underbrace{ {toto} \underbrace{ {toto}
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment