Commit 7c10163c authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 4bdc5859
Pipeline #13709 canceled with stage
......@@ -114,11 +114,19 @@ PRINCIPALES COMBINAISONS
* dans la base cylindrique unitaire $`(\vec{e_{\rho}}\,,\,\vec{e_{\phi}}\,,\,\vec{e_z})`$ :
<br>
$`\Delta\,\overrightarrow{U}=\left(\begin{array}{l}
\dfrac{\partial^2 U_x}{\partial x^2}+\dfrac{\partial^2 U_x}{\partial x^2}+\dfrac{\partial^2 U_x}{\partial x^2}\\
\dfrac{\partial^2 U_y}{\partial x^2}+\dfrac{\partial^2 U_y}{\partial x^2}+\dfrac{\partial^2 U_y}{\partial x^2}\\
\dfrac{\partial^2 U_z}{\partial x^2}+\dfrac{\partial^2 U_z}{\partial x^2}+\dfrac{\partial^2 U_z}{\partial x^2}
\Delta_{cyl}U_{\rho}\\
\Delta_{cyl}U_{\phi}\\
\Delta_{cyl}U_z
\end{array}\right)`$
où $`\Delta_{cyl}`$ est l'expression du laplacien scalaire en coordonnées cylindriques.
* dans la base sphérique unitaire $`(\vec{e_r}\,,\,\vec{e_{\theta}}\,,\,\vec{e_{\phi}})`$ :
<br>
$`\Delta\,\overrightarrow{U}=\left(\begin{array}{l}
\Delta_{sph}U_r\\
\Delta_{sph}U_{\theta}\\
\Delta_{sph}U_{\phi}
\end{array}\right)`$
où $`\Delta_{sph}`$ est l'expression du laplacien scalaire en coordonnées sphériques.
</details>
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment