***$`\overrightarrow{E}`$** est un *vecteur polaire*.
**$`\mathbf{\mathcal{P}_1=}`$***$`\mathbf{\mathcal{P}_1\,(M, \overrightarrow{e_{\rho}}, \overrightarrow{e_z})}`$** est *plan de symétrie* pour $`\dens`$.
**$`\mathbf{\mathcal{P}_2=}`$***$`\mathbf{\mathcal{P}_2\,(M, \overrightarrow{e_{\varphi}}, \overrightarrow{e_{\rho}})}`$** est *plan de symétrie* pour $`\dens`$.
**Choix de $`\mathbf{\mathcal{S}_G}`$* : **cylindre**,
* d'**axe $`Oz`$**.
* de **rayon $`r`$**, coordonnées du point quelconque $`M`$ considéré.
* de **hauteur $`h`$**.
#### Que vaut le flux de $`\overrightarrow{E}`$ à travers $`\mathbf{\mathcal{S}_G}`$ ?
* $`\mathbf{\mathcal{S}_G}`$ surface fermée se décompose en **$`\mathbf{\mathcal{S}_G=\mathcal{S}_{dis1}+\mathcal{S}_{lat}+\mathcal{S}_{dis2}}`$** avec :
***$`\mathbf{\mathcal{S}_{dis1}}`$** : *disque supérieur* d'élément vectoriel de surface **$`\mathbf{\overrightarrow{dS}=+\rho\,d\varphi\,d\rho\,\overrightarrow{e_z}}`$**,