Commit 7ea2ba5d authored by Claude Meny's avatar Claude Meny

Update textbook.fr.md

parent 8319f314
Pipeline #14007 canceled with stage
......@@ -530,7 +530,6 @@ est la pulsation d'unité SI $`rad\,s-{-1}`$.
L'écriture $`\dfrac{d\theta}{dt}=\omega`$ est réservée au cas où la variation temporelle de
l'angle $`\theta`$ a une composante sinusoïdale de pulsation $`\omega`$ stationnaire.
\dfrac{d\theta}{dt}
--------------
......@@ -548,10 +547,13 @@ $`\begin{align}
&=-\;\dfrac{d\theta}{dt}\;\overrightarrow{e_{\rho}}
\end{align}`$
Attention : erreur très courante de confondre en passant d'une ligne à l'autre dans les calculs
$`\dfrac{d^2\theta}{dt^2}`$ et $`\left(\dfrac{d\theta}{dt}\right)^2`$.
---------------
$`\begin{align}
\dfrac{d^2\overrightarrow{e_{\rho}}}{dt^2}&=\dfrac{d}{dt}\bigg(\underbrace{\dfrac{d\overrightarrow{e_{\rho}}}{dt}}_{=\,\dfrac{d\theta}{dt}\,\vec{e_{\theta}}}\bigg)\\
\dfrac{d^2\overrightarrow{e_{\rho}}}{dt^2}&=\dfrac{d}{dt}\bigg(\underbrace{\dfrac{d\overrightarrow{e_{\rho}}}{dt}}_{=\,\frac{d\theta}{dt}\,\vec{e_{\theta}}}\bigg)\\
\\
&=\dfrac{d}{dt}\left(\dfrac{d\theta}{dt}\,\overrightarrow{e_{\theta}}\right)\\
\\
......@@ -564,15 +566,16 @@ $`\begin{align}
---------------
$`\begin{align}
\dfrac{d^2\overrightarrow{e_{\theta}}}{dt^2}
&=\dfrac{d}{dt}\bigg(\underbrace{\dfrac{d\overrightarrow{e_{\theta}}}{dt}}_{=-\dfrac{d\theta}{dt}\,\vec{e_{\rho}}}\bigg)\\
&=\dfrac{d}{dt}\bigg(\underbrace{\dfrac{d\overrightarrow{e_{\theta}}}{dt}}_{=-\frac{d\theta}{dt}\,\vec{e_{\rho}}}\bigg)\\
\\
&=\dfrac{d}{dt}\left(-\dfrac{d\theta}{dt}\,\overrightarrow{e_{\rho}}\right)\\
\\
&=-\dfrac{d^2\theta}{dt^2}\;\overrightarrow{e_{\rho}}\;-\;\dfrac{d\theta}{dt}\;\dfrac{d\overrightarrow{e_{\rho}}}{dt}\\
\\
&=-\dfrac{d^2\theta}{dt^2}\;\overrightarrow{e_{\rho}}\;-\;\dfrac{d\theta}{dt}\;\big(\omega\;\overrightarrow{e_{\theta}}\big)\\
&=-\dfrac{d^2\theta}{dt^2}\;\overrightarrow{e_{\rho}}\;-\;\dfrac{d\theta}{dt}\;\left(\dfrac{d\theta}{dt}\;\overrightarrow{e_{\theta}}\right)\\
\\
&=\dfrac{d^2\theta}{dt^2}\;\overrightarrow{e_{\rho}}\;-\;\left(\dfrac{d\theta}{dt}\right)^2\;\overrightarrow{e_{\theta}}
\end{align}`$
......@@ -601,7 +604,7 @@ $`\begin{align}
\\
&=\underbrace{\dfrac{d\mathscr{l}}{dt}}_{=\,0}\;\dfrac{d\theta}{dt}\;\overrightarrow{e_{\theta}}\;
+\;\mathscr{l}\;\dfrac{d^2\theta}{dt^2}\;\overrightarrow{e_{\theta}}\;
+\;\mathscr{l}\;\dfrac{d\theta}{dt}\;\underbrace{\dfrac{d\overrightarrow{e_{\theta}}}{dt}}_{=\,-\dfrac{d\theta}{dt}\,\vec{e_{\rho}}}\\
+\;\mathscr{l}\;\dfrac{d\theta}{dt}\;\underbrace{\dfrac{d\overrightarrow{e_{\theta}}}{dt}}_{=\,-\frac{d\theta}{dt}\,\vec{e_{\rho}}}\\
\\
&=\mathscr{l}\;\dfrac{d^2\theta}{dt^2}\;\overrightarrow{e_{\theta}}\;-\;\mathscr{l}\;\left(\dfrac{d\theta}{dt}\right)^2\overrightarrow{e_{\rho}}
\end{align}`$
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment