Commit 80e790f7 authored by Claude Meny's avatar Claude Meny

Update textbook.fr.md

parent cb82bf55
Pipeline #13652 canceled with stage
...@@ -25,30 +25,30 @@ _TE and TM waves and their corresponding standing wave behaviour along the y axi ...@@ -25,30 +25,30 @@ _TE and TM waves and their corresponding standing wave behaviour along the y axi
* For TE modes (TE = transverse-electric) we have : * For TE modes (TE = transverse-electric) we have :
$`\overrightarrow{E}_{\perp}=\underbrace{-2\,E_0\,\sin(k\cdot y\cdot \cos\,\theta)}_{\large{amplitude}} $`\overrightarrow{E}_{\perp}=\underbrace{-2\,E_0\,\sin(k\cdot y\cdot \cos\,\theta)}_{\large{amplitude}}
\times \sin\big(\underbrace{k\,\sin\,\theta}_{\large{wavevector}}\;z-\omega t\big)\overrightarrow{e_z}`$ \times \sin\big(\underbrace{k\,\sin\,\theta}_{\large{wavevector}}\,z-\omega t\big)\overrightarrow{e_z}`$
and <br>
$`\overrightarrow{B}_{\perp}= $`\overrightarrow{B}_{\perp}=`$
\left(\begin{array}{l} $`\left(\begin{array}{l}
0\\ 0\\
-\dfrac{2\,E_0}{c}\sin\,\theta \,\sin\,(k\cdot y \cdot \cos\,\theta)\,\sin\,(k\cdot z \cdot \sin\,\theta-\omega t)\\ -\dfrac{2\,E_0}{c}\sin\,\theta \,\sin\,(k\cdot y \cdot \cos\,\theta)\,\sin\,(k\,\sinc\,\theta\;z -\omega t)\\
-\dfrac{2\,E_0}{c}\cos\,\theta \,\cos\,(k\cdot y \cdot \cos\,\theta)\,\cos\,(k\cdot z \cdot \sin\,\theta-\omega t) -\dfrac{2\,E_0}{c}\cos\,\theta \,\cos\,(k\cdot y \cdot \cos\,\theta)\,\cos\,(k\,\sinc\,\theta\;z -\omega t)
\end{array}\right)`$ \end{array}\right)`$
* Similarly for TM modes : * Similarly for TM modes :
$`\overrightarrow{E}_{\parallel}= $`\overrightarrow{E}_{\parallel}=`$
\left(\begin{array}{l} $`\left(\begin{array}{l}
0\\ 0\\
2\,E_0\,\sin\,\theta \,\cos\,(k\cdot y \cdot \cos\,\theta)\,\cos\,(k\cdot z \cdot \sin\,\theta-\omega t)\\ 2\,E_0\,\sin\,\theta \,\cos\,(k\cdot y \cdot \cos\,\theta)\,\cos\,(k\,\sinc\,\theta\;z -\omega t)\\
-2\,E_0\,\cos\,\theta \,\sin\,(k\cdot y \cdot \cos\,\theta)\,\sin\,(k\cdot z \cdot \sin\,\theta-\omega t) -2\,E_0\,\cos\,\theta \,\sin\,(k\cdot y \cdot \cos\,\theta)\,\sin\,(k\,\sinc\,\theta\;z -\omega t)
\end{array}\right)`$ \end{array}\right)`$
and and
$`\overrightarrow{B}_{\parallel}=\underbrace{-2\,E_0\,\sin(k\cdot y\cdot \cos\,\theta)}_{\large{amplitude}} $`\overrightarrow{B}_{\parallel}=\underbrace{-2\,E_0\,\sin(k\cdot y\cdot \cos\,\theta)}_{\large{amplitude}}
\times \sin\big(\underbrace{k\,\sin\,\theta}_{\large{wavevector}}\;z-\omega t\big)\overrightarrow{e_z}`$ \times \sin\big(\underbrace{k\,\sin\,\theta}_{\large{wavevector}}\,z-\omega t\big)\overrightarrow{e_z}`$
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment