Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Courses
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
6
Issues
6
List
Board
Labels
Milestones
Merge Requests
4
Merge Requests
4
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
M3P2
Courses
Commits
80f82d86
Commit
80f82d86
authored
May 20, 2023
by
Claude Meny
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Update cheatsheet.fr.md
parent
68ea1265
Pipeline
#15994
canceled with stage
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
10 additions
and
23 deletions
+10
-23
cheatsheet.fr.md
...electromagnetic-waves-vacuum/20.overview/cheatsheet.fr.md
+10
-23
No files found.
12.temporary_ins/90.electromagnetism-in-vacuum/20.electromagnetic-waves-vacuum/20.overview/cheatsheet.fr.md
View file @
80f82d86
...
@@ -115,13 +115,14 @@ puis d'une onde plane progressive monochromatique (OPPM).
...
@@ -115,13 +115,14 @@ puis d'une onde plane progressive monochromatique (OPPM).
##### Structure de l'onde EM plane (OP) :
##### Structure de l'onde EM plane (OP) :
*
Une onde électromagnétique $
`\big(\overrightarrow{E}\,,\,\overrightarrow{B}\big)`
$ plane est une onde telle qu'à chaque instant $
`t`
$,
*
Une
**onde électromagnétique $`\big(\overrightarrow{E}\,,\,\overrightarrow{B}\big)`$ plane**
est une onde
il existe une direction particulière telle qu'en tout plan perpendiculaire à cette direction, le champ
telle qu'à tout instant $
`t`
$,
$
`\big(\overrightarrow{E}\,,\,\overrightarrow{B}\big)`
$ est uniforme.
il
*existe une direction particulière*
représentée par un vecteur unitaire
*$`\vec{n}`$*
telle que le champ électromagnétique
*$`\big(\overrightarrow{E}\,,\,\overrightarrow{B}\big)`$ est uniforme en tout plan perpendiculaire à $`\vec{n}`$*
*
Choisissons $
`\big(O\,,\vec{e_x}\,,\vec{e_y}\,,\vec{e_z}\big)`
$
un repère cartésien tel qu'en tout point $
`M`
$
*
**Choisissons $`\big(O\,,\vec{e_x}\,,\vec{e_y}\,,\vec{e_z}\big)`$**
un repère cartésien tel qu'en tout point $
`M`
$
de l'espace, le champ $
`\big(\overrightarrow{E}\,,\,\overrightarrow{B}\big)`
$ soit uniforme dans le plan
de l'espace, le champ $
`\big(\overrightarrow{E}\,,\,\overrightarrow{B}\big)`
$ soit uniforme dans le plan
$
`\big(M\,,\vec{e_x}\,,\vec{e_y}\big)`
$ perpendiculaire à
$
`\vec{e_z}`
$, soit
:
$
`\big(M\,,\vec{e_x}\,,\vec{e_y}\big)`
$ perpendiculaire à
*$`\vec{n}=\vec{e_z}`$*
. Nous avons alors
:
<br>
<br>
$
`\dfrac{\partial \overrightarrow{E}}{\partial x}=\dfrac{\partial \overrightarrow{E}}{\partial y}=0`
$
$
`\dfrac{\partial \overrightarrow{E}}{\partial x}=\dfrac{\partial \overrightarrow{E}}{\partial y}=0`
$
<br>
<br>
...
@@ -156,34 +157,20 @@ puis d'une onde plane progressive monochromatique (OPPM).
...
@@ -156,34 +157,20 @@ puis d'une onde plane progressive monochromatique (OPPM).
<br>
<br>
$
`\left.
$
`\left.
\begin{align}\underbrace{div(\overrightarrow{E}=\dfrac{\dens}{\epsilon_0}=0}_{\color{blue}{\text{th. de Gauss}
\begin{align}
&
\underbrace{div(\overrightarrow{E}=\dfrac{\dens}{\epsilon_0}=0}_{\color{blue}{\text{th. de Gauss}
\text{\\dans le vide}}}\\
\text{\\dans le vide}}}\\
\\
\\
\overrightarrow{E}\text{ uniforme}\\
&
\overrightarrow{E}\text{ uniforme}\\
\text{dans tout plan }\perp\overrightarrow{e_z}\end{align}\right\}`
$
\text{dans tout plan }\perp\overrightarrow{e_z}\end{align}\right\}`
$
$
`\Longrightarrow\left\{
$
`\Longrightarrow\left\{
\begin{align}
\begin{align}
\dfrac{\partial E_x}{\partial x}+\dfrac{\partial E_y}{\partial y}
&
\dfrac{\partial E_x}{\partial x}+\dfrac{\partial E_y}{\partial y}
+\dfrac{\partial E_x}{\partial x}=0\\
+\dfrac{\partial E_x}{\partial x}=0\\
\\
\\
\dfrac{\partial E_x}{\partial x}=\dfrac{\partial E_y}{\partial y}=0
&
\dfrac{\partial E_x}{\partial x}=\dfrac{\partial E_y}{\partial y}=0
\end{align}\right\}`
$
\end{align}\right\}`
$
$
`\Longrightarrow\;\dfrac{\partial E_z}{\partial z}=0`
$
$
`\Longrightarrow\;\dfrac{\partial E_z}{\partial z}=0`
$
$
`\left.
\begin{align}\underbrace{div(\overrightarrow{E}=\dfrac{\dens}{\epsilon_0}=0}_{\color{blue}{\text{th. de Gauss}
\text{\\dans le vide}}}\\
\\
\overrightarrow{E}\text{ uniforme}\\
\text{dans tout plan }\perp\overrightarrow{e_z}\end{align}\right}`
$
$
`\Longrightarrow\left{
\begin{align}
\dfrac{\partial E_x}{\partial x}+\dfrac{\partial E_y}{\partial y}
+\dfrac{\partial E_x}{\partial x}=0\\
\\
\dfrac{\partial E_x}{\partial x}=\dfrac{\partial E_y}{\partial y}=0
\end{align}\right}`
$
$
`\Longrightarrow\;\dfrac{\partial E_z}{\partial z}=0`
$
schéma de démonstration à faire, puis modifier :
schéma de démonstration à faire, puis modifier :
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment