Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Courses
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
6
Issues
6
List
Board
Labels
Milestones
Merge Requests
4
Merge Requests
4
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
M3P2
Courses
Commits
81a6acfb
Commit
81a6acfb
authored
Apr 23, 2023
by
Claude Meny
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Update cheatsheet.fr.md
parent
15102946
Pipeline
#15922
failed with stage
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
27 additions
and
27 deletions
+27
-27
cheatsheet.fr.md
12.temporary_ins/69.waves/30.n3/20.overview/cheatsheet.fr.md
+27
-27
No files found.
12.temporary_ins/69.waves/30.n3/20.overview/cheatsheet.fr.md
View file @
81a6acfb
...
@@ -1499,21 +1499,21 @@ deux célérités différentes pour $`{\omega_1}`$ et $`{\omega_1}`$. Ainsi le c
...
@@ -1499,21 +1499,21 @@ deux célérités différentes pour $`{\omega_1}`$ et $`{\omega_1}`$. Ainsi le c
*
Pour chaque grandeur physique, la façon de
*gérer ces valeurs indépendantes*
est de les
**réexprimer**
en fonction de ce qu'elles ont en commun,
*
Pour chaque grandeur physique, la façon de
*gérer ces valeurs indépendantes*
est de les
**réexprimer**
en fonction de ce qu'elles ont en commun,
une
**valeur moyenne**
, et de leurs
**écarts respectifs**
par rapport à la valeur moyenne. Ainsi :
une
**valeur moyenne**
, et de leurs
**écarts respectifs**
par rapport à la valeur moyenne. Ainsi :
*
**$`A_1 =`$**
$
`\; \dfrac{A_1 + A_2}{2} + \dfrac{A_1 - A_2}{2} = `
$
*$`\; A_{moy} + \Delta A_{1
-
2}`$*
*
**$`A_1 =`$**
$
`\; \dfrac{A_1 + A_2}{2} + \dfrac{A_1 - A_2}{2} = `
$
*$`\; A_{moy} + \Delta A_{12}`$*
<br>
<br>
**$`A_2 =`$**
$
`\; \dfrac{A_1 + A_2}{2} - \dfrac{A_1 - A_2}{2} = `
$
*$`\; A_{moy} - \Delta A_{1
-
2}`$*
**$`A_2 =`$**
$
`\; \dfrac{A_1 + A_2}{2} - \dfrac{A_1 - A_2}{2} = `
$
*$`\; A_{moy} - \Delta A_{12}`$*
*
**$`\omega_1 =`$**
$
`\; \dfrac{\omega_1 + \omega_2}{2} + \dfrac{\omega_1 - \omega_2}{2} = `
$
*$`\; \omega_{moy} + \Delta \omega_{1
-
2}`$*
*
**$`\omega_1 =`$**
$
`\; \dfrac{\omega_1 + \omega_2}{2} + \dfrac{\omega_1 - \omega_2}{2} = `
$
*$`\; \omega_{moy} + \Delta \omega_{12}`$*
<br>
<br>
**$`\omega_2 =`$**
$
`\; \dfrac{\omega_1 + \omega_2}{2} - \dfrac{\omega_1 - \omega_2}{2} = `
$
*$`\; \omega_{moy} - \Delta \omega_{1
-
2}`$*
**$`\omega_2 =`$**
$
`\; \dfrac{\omega_1 + \omega_2}{2} - \dfrac{\omega_1 - \omega_2}{2} = `
$
*$`\; \omega_{moy} - \Delta \omega_{12}`$*
*
**$`\overrightarrow{k}_1 =`$**
$
`\; \dfrac{\overrightarrow{k}_1 + \overrightarrow{k}_2}{2} + \dfrac{\overrightarrow{k}_1 - \overrightarrow{k}_2}{2} = `
$
*$`\; \overrightarrow{k}_{moy} + \Delta \overrightarrow{k}_{1
-
2}`$*
*
**$`\overrightarrow{k}_1 =`$**
$
`\; \dfrac{\overrightarrow{k}_1 + \overrightarrow{k}_2}{2} + \dfrac{\overrightarrow{k}_1 - \overrightarrow{k}_2}{2} = `
$
*$`\; \overrightarrow{k}_{moy} + \Delta \overrightarrow{k}_{12}`$*
<br>
<br>
**$`\overrightarrow{k}_2 =`$**
$
`\; \dfrac{\overrightarrow{k}_1 + \overrightarrow{k}_2}{2} - \dfrac{\overrightarrow{k}_1 - \overrightarrow{k}_2}{2} = `
$
*$`\; \overrightarrow{k}_{moy} - \Delta \overrightarrow{k}_{1
-
2}`$*
**$`\overrightarrow{k}_2 =`$**
$
`\; \dfrac{\overrightarrow{k}_1 + \overrightarrow{k}_2}{2} - \dfrac{\overrightarrow{k}_1 - \overrightarrow{k}_2}{2} = `
$
*$`\; \overrightarrow{k}_{moy} - \Delta \overrightarrow{k}_{12}`$*
*
**$`\varphi_1 =`$**
$
`\; \dfrac{\varphi_1 + \varphi_2}{2} + \dfrac{\varphi_1 - \varphi_2}{2} = `
$
*$`\; \varphi_{moy} + \Delta \varphi_{1
-
2}`$*
*
**$`\varphi_1 =`$**
$
`\; \dfrac{\varphi_1 + \varphi_2}{2} + \dfrac{\varphi_1 - \varphi_2}{2} = `
$
*$`\; \varphi_{moy} + \Delta \varphi_{12}`$*
<br>
<br>
**$`\varphi_2 =`$**
$
`\; \dfrac{\varphi_1 + \varphi_2}{2} - \dfrac{\varphi_1 - \varphi_2}{2} = `
$
*$`\; \varphi_{moy} - \Delta \varphi_{1
-
2}`$*
**$`\varphi_2 =`$**
$
`\; \dfrac{\varphi_1 + \varphi_2}{2} - \dfrac{\varphi_1 - \varphi_2}{2} = `
$
*$`\; \varphi_{moy} - \Delta \varphi_{12}`$*
*
*Travaillons*
d'abord avec les
**termes d'amplitude**
:
*
*Travaillons*
d'abord avec les
**termes d'amplitude**
:
<br>
<br>
...
@@ -1524,23 +1524,23 @@ $`\begin{array}\quad = &A_1\,cos\big(\underbrace{\omega_1 t + \overrightarrow{k}
...
@@ -1524,23 +1524,23 @@ $`\begin{array}\quad = &A_1\,cos\big(\underbrace{\omega_1 t + \overrightarrow{k}
$
`\quad\;\, = A_1\,cos\,\theta_1 + A_2\,cos\,\theta_2`
$
$
`\quad\;\, = A_1\,cos\,\theta_1 + A_2\,cos\,\theta_2`
$
$
`\quad\;\, = (A_{moy}+ \Delta A_{1
-2})\,cos\,\theta_1 + (A_{moy} - \Delta A_{1-
2})\,cos\,\theta_2`
$
$
`\quad\;\, = (A_{moy}+ \Delta A_{1
2})\,cos\,\theta_1 + (A_{moy} - \Delta A_{1
2})\,cos\,\theta_2`
$
**$`\quad\;\, = A_{moy}\,(cos\,\theta_1 + cos\,\theta_2) + \Delta A_{1
-
2}\,(cos\theta_1 - cos\theta_2)`$**
**$`\quad\;\, = A_{moy}\,(cos\,\theta_1 + cos\,\theta_2) + \Delta A_{12}\,(cos\theta_1 - cos\theta_2)`$**
*
*Travaillons*
les
**termes de phase**
:
*
*Travaillons*
les
**termes de phase**
:
<br>
<br>
**$`\theta_1(\overrightarrow{r},t)`$**
$
`\; = \omega_1 t + \overrightarrow{k}_1\cdot\overrightarrow{r}+\varphi_1`
$
**$`\theta_1(\overrightarrow{r},t)`$**
$
`\; = \omega_1 t + \overrightarrow{k}_1\cdot\overrightarrow{r}+\varphi_1`
$
$
`\begin{align}\quad\;\;= \big[ (\omega_{moy}&+ \Delta \omega_{1
-2})\, t + \big(\overrightarrow{k}_{moy}+ \Delta \overrightarrow{k}_{1-
2}\big)\cdot\overrightarrow{r}\\
$
`\begin{align}\quad\;\;= \big[ (\omega_{moy}&+ \Delta \omega_{1
2})\, t + \big(\overrightarrow{k}_{moy}+ \Delta \overrightarrow{k}_{1
2}\big)\cdot\overrightarrow{r}\\
&+( \varphi_{moy} + \Delta \varphi_{1
-
2})\big]\end{align}`
$
&+( \varphi_{moy} + \Delta \varphi_{12})\big]\end{align}`
$
$
`\begin{align}
$
`\begin{align}
\quad\;\,&= \big[ \big(\underbrace{\omega_{moy} t + \overrightarrow{k}_{moy}\cdot\overrightarrow{r}+ \varphi_{moy}}_{\color{blue}{\theta_{moy}(\overrightarrow{r},t)}}\big) \\
\quad\;\,&= \big[ \big(\underbrace{\omega_{moy} t + \overrightarrow{k}_{moy}\cdot\overrightarrow{r}+ \varphi_{moy}}_{\color{blue}{\theta_{moy}(\overrightarrow{r},t)}}\big) \\
&\quad + \big(\underbrace{\Delta \omega_{1
-2} t + \Delta \overrightarrow{k}_{1-2}\cdot\overrightarrow{r}+\Delta\varphi_{1-2}}_{\color{blue}{\theta_{1-
2}(\overrightarrow{r},t)}}\big)\big]
&\quad + \big(\underbrace{\Delta \omega_{1
2} t + \Delta \overrightarrow{k}_{12}\cdot\overrightarrow{r}+\Delta\varphi_{12}}_{\color{blue}{\theta_{1
2}(\overrightarrow{r},t)}}\big)\big]
\end{align}`
$
\end{align}`
$
**$`\quad\;\;=\,\theta_{moy}(\overrightarrow{r},t)\,+\,\theta_{1
-
2}(\overrightarrow{r},t)`$**
**$`\quad\;\;=\,\theta_{moy}(\overrightarrow{r},t)\,+\,\theta_{12}(\overrightarrow{r},t)`$**
<br>
<br>
et de la même façon nous obtenons :
et de la même façon nous obtenons :
<br>
<br>
...
@@ -1548,31 +1548,31 @@ $`\begin{align}
...
@@ -1548,31 +1548,31 @@ $`\begin{align}
<br>
<br>
$
`\quad\quad \;\; = \cdots`
$
$
`\quad\quad \;\; = \cdots`
$
<br>
<br>
**$`\quad\quad\;\;=\,\theta_{moy}(\overrightarrow{r},t)\,-\,\theta_{1
-
2}(\overrightarrow{r},t)`$**
**$`\quad\quad\;\;=\,\theta_{moy}(\overrightarrow{r},t)\,-\,\theta_{12}(\overrightarrow{r},t)`$**
*
*Travaillons*
les
**termes $`(cos\theta_1+cos\theta_2)`$ et $`(cos\theta_1-cos\theta_2)`$**
qui interviennent
*
*Travaillons*
les
**termes $`(cos\theta_1+cos\theta_2)`$ et $`(cos\theta_1-cos\theta_2)`$**
qui interviennent
dans l'expression de $
`U(\vec{r},t)`
$ :
dans l'expression de $
`U(\vec{r},t)`
$ :
<br>
<br>
**$`cos\theta_1+cos\theta_2 =`$**
$
`\;cos
\,(\theta_{moy}+\Delta\theta_{1-2})+cos\,(\theta_{moy}-\Delta\theta_{1-2}
`
$
**$`cos\theta_1+cos\theta_2 =`$**
$
`\;cos
(\theta_{moy}+\Delta\theta_{12})+cos(\theta_{moy}-\Delta\theta_{12})
`
$
<br>
<br>
$
`\color{blue}{\scriptsize{\left.\begin{align} \quad\quad &cos(a+b)=cos(a)cos(b)-sin(a)sin(b)\\
$
`\color{blue}{\scriptsize{\left.\begin{align} \quad\quad &cos(a+b)=cos(a)cos(b)-sin(a)sin(b)\\
&cos(a-b)=cos(a)cos(b)+-sin(a)sin(b)\end{align}
&cos(a-b)=cos(a)cos(b)+-sin(a)sin(b)\end{align}
\right\}\Longrightarrow\\
\right\}\Longrightarrow\\
\quad\quad cos(a+b)\,+\,cos(a-b)\,=\,2\,cos(a)\,cos(b)}}`
$
\quad\quad cos(a+b)\,+\,cos(a-b)\,=\,2\,cos(a)\,cos(b)}}`
$
<br>
<br>
**$`\quad\;\; = 2\,cos\,\theta_{moy}\;cos\,\Delta\theta_{1
-
2}`$**
**$`\quad\;\; = 2\,cos\,\theta_{moy}\;cos\,\Delta\theta_{12}`$**
<br>
<br>
de même
de même
<br>
<br>
**$`cos\theta_1-cos\theta_2 =`$**
$
`\;cos
\,(\theta_{moy}+\Delta\theta_{1-2})-cos\,(\theta_{moy}-\Delta\theta_{1-2}
`
$
**$`cos\theta_1-cos\theta_2 =`$**
$
`\;cos
(\theta_{moy}+\Delta\theta_{12})-cos(\theta_{moy}-\Delta\theta_{12})
`
$
<br>
<br>
$
`\color{blue}{\scriptsize{\left.\begin{align} \quad\quad &cos(a+b)=cos(a)cos(b)-sin(a)sin(b)\\
$
`\color{blue}{\scriptsize{\left.\begin{align} \quad\quad &cos(a+b)=cos(a)cos(b)-sin(a)sin(b)\\
&cos(a-b)=cos(a)cos(b)+-sin(a)sin(b)\end{align}
&cos(a-b)=cos(a)cos(b)+-sin(a)sin(b)\end{align}
\right\}\Longrightarrow\\
\right\}\Longrightarrow\\
\quad\quad cos(a+b)\,-\,cos(a-b)\,=\,-\,2\,sin(a)\,sin(b)}}`
$
\quad\quad cos(a+b)\,-\,cos(a-b)\,=\,-\,2\,sin(a)\,sin(b)}}`
$
<br>
<br>
**$`\quad\;\; = -\,2\,sin\,\theta_{moy}\;sin\,\Delta\theta_{1
-
2}`$**
**$`\quad\;\; = -\,2\,sin\,\theta_{moy}\;sin\,\Delta\theta_{12}`$**
*
Nous obtenons l'
**expression finale**
de l'onde résultante de la
*superposition de deux OPPH*
quelconques :
*
Nous obtenons l'
**expression finale**
de l'onde résultante de la
*superposition de deux OPPH*
quelconques :
...
@@ -1583,13 +1583,13 @@ $`\quad\quad \;\; = \cdots`$
...
@@ -1583,13 +1583,13 @@ $`\quad\quad \;\; = \cdots`$
&+ \;A_2\,cos\big(\underbrace{\omega_2 t + \overrightarrow{k}_2\cdot\overrightarrow{r}+\varphi_2}_{\color{blue}{\theta_2(\vec{r},t)}}\big)
&+ \;A_2\,cos\big(\underbrace{\omega_2 t + \overrightarrow{k}_2\cdot\overrightarrow{r}+\varphi_2}_{\color{blue}{\theta_2(\vec{r},t)}}\big)
\end{array}`
$
*
\end{array}`
$
*
<br>
<br>
$
`\begin{array}\quad = &+\,2\,A_{moy}\,cos\,\theta_{moy}\;cos\,\Delta\theta_{1
-
2}\\
$
`\begin{array}\quad = &+\,2\,A_{moy}\,cos\,\theta_{moy}\;cos\,\Delta\theta_{12}\\
&-\,2\,\Delta A_{1-2}\,\,sin\,\theta_{moy}\;sin\,\Delta\theta_{1
-
2}\end{array}`
$
&-\,2\,\Delta A_{1-2}\,\,sin\,\theta_{moy}\;sin\,\Delta\theta_{12}\end{array}`
$
<br>
<br>
**
$
`\begin{array}\quad = &+\,2\,A_{moy}\,cos\big(\omega_{moy} t + \overrightarrow{k}_{moy}\cdot\overrightarrow{r}+ \varphi_{moy}\big)\\
**
$
`\begin{array}\quad = &+\,2\,A_{moy}\,cos\big(\omega_{moy} t + \overrightarrow{k}_{moy}\cdot\overrightarrow{r}+ \varphi_{moy}\big)\\
&\quad\times\,cos\big(\Delta \omega_{1
-2} t + \Delta \overrightarrow{k}_{1-2}\cdot\overrightarrow{r}+\Delta\varphi_{1-
2}\big)\\
&\quad\times\,cos\big(\Delta \omega_{1
2} t + \Delta \overrightarrow{k}_{12}\cdot\overrightarrow{r}+\Delta\varphi_{1
2}\big)\\
&-\,2\,\Delta A_{1-2}\,sin\big(\omega_{moy} t + \overrightarrow{k}_{moy}\cdot\overrightarrow{r}+ \varphi_{moy}\big)\\
&-\,2\,\Delta A_{1-2}\,sin\big(\omega_{moy} t + \overrightarrow{k}_{moy}\cdot\overrightarrow{r}+ \varphi_{moy}\big)\\
&\quad\times\,sin\big(\Delta \omega_{1
-2} t + \Delta \overrightarrow{k}_{1-2}\cdot\overrightarrow{r}+\Delta\varphi_{1-
2}\big)
&\quad\times\,sin\big(\Delta \omega_{1
2} t + \Delta \overrightarrow{k}_{12}\cdot\overrightarrow{r}+\Delta\varphi_{1
2}\big)
\end{array}`
$
**
\end{array}`
$
**
...
@@ -1628,12 +1628,12 @@ $`\quad\quad \;\; = \cdots`$
...
@@ -1628,12 +1628,12 @@ $`\quad\quad \;\; = \cdots`$
<br>
<br>
**$`\mathbf{\boldsymbol{U(\overrightarrow{r},t)}}`$**
**$`\mathbf{\boldsymbol{U(\overrightarrow{r},t)}}`$**
$
`\begin{array}\quad = &+\,2\,\color{blue}{\underbrace{A_{moy}}_{=\;A}}\,cos\big(\omega_{moy} t + \color{blue}{\underbrace{\overrightarrow{k}_{moy}\cdot\overrightarrow{r}+ \varphi_{moy}}_{=\;\varphi_A}} \big)\\
$
`\begin{array}\quad = &+\,2\,\color{blue}{\underbrace{A_{moy}}_{=\;A}}\,cos\big(\omega_{moy} t + \color{blue}{\underbrace{\overrightarrow{k}_{moy}\cdot\overrightarrow{r}+ \varphi_{moy}}_{=\;\varphi_A}} \big)\\
&\quad\times\,cos\big(\Delta \omega_{1
-2} t + \color{blue}{\underbrace{\Delta \overrightarrow{k}_{1-2}\cdot\overrightarrow{r}+\Delta\varphi_{1-
2}}_{=\;\varphi_B}}\big)\\
&\quad\times\,cos\big(\Delta \omega_{1
2} t + \color{blue}{\underbrace{\Delta \overrightarrow{k}_{12}\cdot\overrightarrow{r}+\Delta\varphi_{1
2}}_{=\;\varphi_B}}\big)\\
&-\,2\,\color{blue}{\underbrace{\Delta A_{1
-
2}}_{=\;0}}\,sin\big(\omega_{moy} t + \overrightarrow{k}_{moy}\cdot\overrightarrow{r}+ \varphi_{moy}\big)\\
&-\,2\,\color{blue}{\underbrace{\Delta A_{12}}_{=\;0}}\,sin\big(\omega_{moy} t + \overrightarrow{k}_{moy}\cdot\overrightarrow{r}+ \varphi_{moy}\big)\\
&\quad\times\,sin\big(\Delta \omega_{1
-2} t + \Delta \overrightarrow{k}_{1-2}\cdot\overrightarrow{r}+\Delta\varphi_{1-
2}\big)
&\quad\times\,sin\big(\Delta \omega_{1
2} t + \Delta \overrightarrow{k}_{12}\cdot\overrightarrow{r}+\Delta\varphi_{1
2}\big)
\end{array}`
$
\end{array}`
$
<br>
<br>
**
$
`\begin{array}\quad = \underbrace{2\,A\,\,cos\big(\Delta \omega_{1
-
2} t + \varphi_B)}_{\color{blue}{\text{lentement variable} \\ \text{fonction enveloppe}}} \times cos\,(\omega_{moy} t + \varphi_A)
**
$
`\begin{array}\quad = \underbrace{2\,A\,\,cos\big(\Delta \omega_{12} t + \varphi_B)}_{\color{blue}{\text{lentement variable} \\ \text{fonction enveloppe}}} \times cos\,(\omega_{moy} t + \varphi_A)
\end{array}`
$
**
\end{array}`
$
**
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment