Commit 8319f314 authored by Claude Meny's avatar Claude Meny

Update textbook.fr.md

parent 6c31235d
Pipeline #14006 canceled with stage
...@@ -517,14 +517,21 @@ $`\begin{align} ...@@ -517,14 +517,21 @@ $`\begin{align}
&=\bigg[\dfrac{d\cos\theta}{dt}\;\overrightarrow{e_x} + \sin\theta\;\underbrace{\dfrac{d\overrightarrow{e_z}}{dt}}_{=\,\vec{0}}\bigg]\\ &=\bigg[\dfrac{d\cos\theta}{dt}\;\overrightarrow{e_x} + \sin\theta\;\underbrace{\dfrac{d\overrightarrow{e_z}}{dt}}_{=\,\vec{0}}\bigg]\\
&\quad\quad+\bigg[\dfrac{d(-\sin\theta)}{dt}\;\overrightarrow{e_z}+\cos\theta\;\underbrace{\dfrac{d\overrightarrow{e_z}}{dt}}_{=\,\vec{0}}\bigg]\\ &\quad\quad+\bigg[\dfrac{d(-\sin\theta)}{dt}\;\overrightarrow{e_z}+\cos\theta\;\underbrace{\dfrac{d\overrightarrow{e_z}}{dt}}_{=\,\vec{0}}\bigg]\\
\\ \\
&=\dfrac{d\cos\theta}{d\theta}\;\underbrace{\dfrac{d\theta}{dt}}_{=\,\omega}\;\overrightarrow{e_x} &=\dfrac{d\cos\theta}{d\theta}\;\dfrac{d\theta}{dt}\;\overrightarrow{e_x}
+\dfrac{d(-\sin\theta)}{d\theta}\;\underbrace{\dfrac{d\theta}{dt}}_{=\,\omega}\;\overrightarrow{e_z}\\ +\dfrac{d(-\sin\theta)}{d\theta}\;\dfrac{d\theta}{dt}\;\overrightarrow{e_z}\\
\\ \\
&=\omega\;\big(-\sin\theta\;\overrightarrow{e_x}+\cos\theta\;\overrightarrow{e_z}\big)\\ &=\dfrac{d\theta}{dt}\;\big(-\sin\theta\;\overrightarrow{e_x}+\cos\theta\;\overrightarrow{e_z}\big)\\
\\ \\
&=\omega\;\overrightarrow{e_{\theta}} &=\dfrac{d\theta}{dt}\;\overrightarrow{e_{\theta}}
\end{align}`$ \end{align}`$
Note : Dans le cas général, on évite d'écrire $`\dfrac{d\theta}{dt}=\omega`$ où $`\omega`$
est la pulsation d'unité SI $`rad\,s-{-1}`$.
L'écriture $`\dfrac{d\theta}{dt}=\omega`$ est réservée au cas où la variation temporelle de
l'angle $`\theta`$ a une composante sinusoïdale de pulsation $`\omega`$ stationnaire.
\dfrac{d\theta}{dt}
-------------- --------------
$`\begin{align} $`\begin{align}
...@@ -533,41 +540,41 @@ $`\begin{align} ...@@ -533,41 +540,41 @@ $`\begin{align}
&=\bigg[\dfrac{d(-\sin\theta)}{dt}\;\overrightarrow{e_x} - \sin\theta\;\underbrace{\dfrac{d\overrightarrow{e_z}}{dt}}_{=\,\vec{0}}\bigg]\\ &=\bigg[\dfrac{d(-\sin\theta)}{dt}\;\overrightarrow{e_x} - \sin\theta\;\underbrace{\dfrac{d\overrightarrow{e_z}}{dt}}_{=\,\vec{0}}\bigg]\\
&\quad\quad+\bigg[\dfrac{d\cos\theta}{dt}\;\overrightarrow{e_z}+\cos\theta\;\underbrace{\dfrac{d\overrightarrow{e_z}}{dt}}_{=\,\vec{0}}\bigg]\\ &\quad\quad+\bigg[\dfrac{d\cos\theta}{dt}\;\overrightarrow{e_z}+\cos\theta\;\underbrace{\dfrac{d\overrightarrow{e_z}}{dt}}_{=\,\vec{0}}\bigg]\\
\\ \\
&=\dfrac{d(-\sin\theta)}{d\theta}\;\underbrace{\dfrac{d\theta}{dt}}_{=\,\omega}\;\overrightarrow{e_x} &=\dfrac{d(-\sin\theta)}{d\theta}\;\dfrac{d\theta}{dt}\;\overrightarrow{e_x}
+\dfrac{d\cos\theta}{d\theta}\;\underbrace{\dfrac{d\theta}{dt}}_{=\,\omega}\;\overrightarrow{e_z}\\ +\dfrac{d\cos\theta}{d\theta}\;\dfrac{d\theta}{dt}\;\overrightarrow{e_z}\\
\\ \\
&=\omega\;\Big(-\cos\theta\;\overrightarrow{e_x}-\sin\theta\;\overrightarrow{e_z}\Big)\\ &=\dfrac{d\theta}{dt}\;\Big(-\cos\theta\;\overrightarrow{e_x}-\sin\theta\;\overrightarrow{e_z}\Big)\\
\\ \\
&=-\;\omega\;\overrightarrow{e_{\rho}} &=-\;\dfrac{d\theta}{dt}\;\overrightarrow{e_{\rho}}
\end{align}`$ \end{align}`$
--------------- ---------------
$`\begin{align} $`\begin{align}
\dfrac{d^2\overrightarrow{e_{\rho}}}{dt^2}&=\dfrac{d}{dt}\bigg(\underbrace{\dfrac{d\overrightarrow{e_{\rho}}}{dt}}_{=\,\omega\,\vec{e_{\theta}}}\bigg)\\ \dfrac{d^2\overrightarrow{e_{\rho}}}{dt^2}&=\dfrac{d}{dt}\bigg(\underbrace{\dfrac{d\overrightarrow{e_{\rho}}}{dt}}_{=\,\dfrac{d\theta}{dt}\,\vec{e_{\theta}}}\bigg)\\
\\ \\
&=\dfrac{d}{dt}\left(\omega\,\overrightarrow{e_{\theta}}\right)\\ &=\dfrac{d}{dt}\left(\dfrac{d\theta}{dt}\,\overrightarrow{e_{\theta}}\right)\\
\\ \\
&=\dfrac{d\omega}{dt}\;\overrightarrow{e_{\theta}}\;+\;\omega\;\dfrac{d\overrightarrow{e_{\theta}}}{dt}\\ &=\dfrac{d^2\theta}{dt^2}\;\overrightarrow{e_{\theta}}\;+\;\dfrac{d\theta}{dt}\;\dfrac{d\overrightarrow{e_{\theta}}}{dt}\\
\\ \\
&=\dfrac{d\omega}{dt}\;\overrightarrow{e_{\theta}}\;+\;\omega\;\big(-\,\omega\;\overrightarrow{e_{\rho}}\big)\\ &=\dfrac{d^2\theta}{dt^2}\;\overrightarrow{e_{\theta}}\;+\;\dfrac{d\theta}{dt}\;\left(-\,\dfrac{d\theta}{dt}\;\overrightarrow{e_{\rho}}\right)\\
\\ \\
&=\dfrac{d\omega}{dt}\;\overrightarrow{e_{\theta}}\;-\;\omega^2\;\overrightarrow{e_{\rho}} &=\dfrac{d^2\theta}{dt^2}\;\overrightarrow{e_{\theta}}\;-\;\left(\dfrac{d\theta}{dt}\right)^2\;\overrightarrow{e_{\rho}}
\end{align}`$ \end{align}`$
--------------- ---------------
$`\begin{align} $`\begin{align}
\dfrac{d^2\overrightarrow{e_{\theta}}}{dt^2} \dfrac{d^2\overrightarrow{e_{\theta}}}{dt^2}
&=\dfrac{d}{dt}\bigg(\underbrace{\dfrac{d\overrightarrow{e_{\theta}}}{dt}}_{=-\omega\,\vec{e_{\rho}}}\bigg)\\ &=\dfrac{d}{dt}\bigg(\underbrace{\dfrac{d\overrightarrow{e_{\theta}}}{dt}}_{=-\dfrac{d\theta}{dt}\,\vec{e_{\rho}}}\bigg)\\
\\ \\
&=\dfrac{d}{dt}\left(-\omega\,\overrightarrow{e_{\rho}}\right)\\ &=\dfrac{d}{dt}\left(-\dfrac{d\theta}{dt}\,\overrightarrow{e_{\rho}}\right)\\
\\ \\
&=-\dfrac{d\omega}{dt}\;\overrightarrow{e_{\rho}}\;-\;\omega\;\dfrac{d\overrightarrow{e_{\rho}}}{dt}\\ &=-\dfrac{d^2\theta}{dt^2}\;\overrightarrow{e_{\rho}}\;-\;\dfrac{d\theta}{dt}\;\dfrac{d\overrightarrow{e_{\rho}}}{dt}\\
\\ \\
&=-\dfrac{d\omega}{dt}\;\overrightarrow{e_{\rho}}\;-\;\omega\;\big(\omega\;\overrightarrow{e_{\theta}}\big)\\ &=-\dfrac{d^2\theta}{dt^2}\;\overrightarrow{e_{\rho}}\;-\;\dfrac{d\theta}{dt}\;\big(\omega\;\overrightarrow{e_{\theta}}\big)\\
\\ \\
&=\dfrac{d\omega}{dt}\;\overrightarrow{e_{\rho}}\;-\;\omega^2\;\overrightarrow{e_{\theta}} &=\dfrac{d^2\theta}{dt^2}\;\overrightarrow{e_{\rho}}\;-\;\left(\dfrac{d\theta}{dt}\right)^2\;\overrightarrow{e_{\theta}}
\end{align}`$ \end{align}`$
---------------- ----------------
...@@ -583,20 +590,20 @@ $`\begin{align} ...@@ -583,20 +590,20 @@ $`\begin{align}
\\ \\
&=\underbrace{\dfrac{d\mathscr{l}}{dt}}_{=\,0}\;\overrightarrow{e_{\rho}}\;+\;\mathscr{l}\;\dfrac{d\overrightarrow{e_{\rho}}}{dt}\\ &=\underbrace{\dfrac{d\mathscr{l}}{dt}}_{=\,0}\;\overrightarrow{e_{\rho}}\;+\;\mathscr{l}\;\dfrac{d\overrightarrow{e_{\rho}}}{dt}\\
\\ \\
&=\mathscr{l}\;\omega\;\overrightarrow{e_{\theta}} &=\mathscr{l}\;\dfrac{d\theta}{dt}\;\overrightarrow{e_{\theta}}
\end{align}`$ \end{align}`$
$`\begin{align} $`\begin{align}
\overrightarrow{a_M}&=\dfrac{d\overrightarrow{\mathscr{v}_M}}{dt}\\ \overrightarrow{a_M}&=\dfrac{d\overrightarrow{\mathscr{v}_M}}{dt}\\
\\ \\
&=\dfrac{d}{dt}\big(\mathscr{l}\;\omega\;\overrightarrow{e_{\theta}}\big)\\ &=\dfrac{d}{dt}\left(\mathscr{l}\;\dfrac{d\theta}{dt}\;\overrightarrow{e_{\theta}}\right)\\
\\ \\
&=\underbrace{\dfrac{d\mathscr{l}}{dt}}_{=\,0}\;\omega\;\overrightarrow{e_{\theta}}\; &=\underbrace{\dfrac{d\mathscr{l}}{dt}}_{=\,0}\;\dfrac{d\theta}{dt}\;\overrightarrow{e_{\theta}}\;
+\;\mathscr{l}\;\dfrac{d\omega}{dt}\;\overrightarrow{e_{\theta}}\; +\;\mathscr{l}\;\dfrac{d^2\theta}{dt^2}\;\overrightarrow{e_{\theta}}\;
+\;\mathscr{l}\;\omega\;\underbrace{\dfrac{d\overrightarrow{e_{\theta}}}{dt}}_{=\,-\omega\,\vec{e_{\rho}}}\\ +\;\mathscr{l}\;\dfrac{d\theta}{dt}\;\underbrace{\dfrac{d\overrightarrow{e_{\theta}}}{dt}}_{=\,-\dfrac{d\theta}{dt}\,\vec{e_{\rho}}}\\
\\ \\
&=\mathscr{l}\;\dfrac{d\omega}{dt}\;\overrightarrow{e_{\theta}}\;-\;\mathscr{l}\;\omega^2\overrightarrow{e_{\rho}} &=\mathscr{l}\;\dfrac{d^2\theta}{dt^2}\;\overrightarrow{e_{\theta}}\;-\;\mathscr{l}\;\left(\dfrac{d\theta}{dt}\right)^2\overrightarrow{e_{\rho}}
\end{align}`$ \end{align}`$
...@@ -634,13 +641,13 @@ La masse du corps M est constante. ...@@ -634,13 +641,13 @@ La masse du corps M est constante.
$`m\;\overrightarrow{a_M}\cdot\overrightarrow{e_{\rho}}=\overrightarrow{F_{totale}}\cdot\overrightarrow{e_{\rho}}`$ $`m\;\overrightarrow{a_M}\cdot\overrightarrow{e_{\rho}}=\overrightarrow{F_{totale}}\cdot\overrightarrow{e_{\rho}}`$
$`\Longrightarrow\quad -\;\mathscr{l}\;\omega^2=m\,g\,\cos\theta-R`$ $`\Longrightarrow\quad -\;\mathscr{l}\;\left(\dfrac{d\theta}{dt}\right)^2=m\,g\,\cos\theta-R`$
Projetons la deuxième loi de Newtion sur $`\overrightarrow{e_{\theta}}`$ : Projetons la deuxième loi de Newtion sur $`\overrightarrow{e_{\theta}}`$ :
$`m\;\overrightarrow{a_M}\cdot\overrightarrow{e_{\theta}}=\overrightarrow{F_{totale}}\cdot\overrightarrow{e_{\theta}}`$ $`m\;\overrightarrow{a_M}\cdot\overrightarrow{e_{\theta}}=\overrightarrow{F_{totale}}\cdot\overrightarrow{e_{\theta}}`$
$`\Longrightarrow\quad\mathscr{l}\;\dfrac{d\omega}{dt}=-\,m\,g\,\sin\theta`$ $`\Longrightarrow\quad\mathscr{l}\;\dfrac{d^2\theta}{dt^2}=-\,m\,g\,\sin\theta`$
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment