Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Courses
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
6
Issues
6
List
Board
Labels
Milestones
Merge Requests
4
Merge Requests
4
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
M3P2
Courses
Commits
845609b9
Commit
845609b9
authored
Jan 19, 2021
by
Claude Meny
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Update cheatsheet.fr.md
parent
9f3eed2f
Pipeline
#4525
canceled with stage
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
14 additions
and
0 deletions
+14
-0
cheatsheet.fr.md
...orary_ins/15.electrokinetics/20.overview/cheatsheet.fr.md
+14
-0
No files found.
12.temporary_ins/15.electrokinetics/20.overview/cheatsheet.fr.md
View file @
845609b9
...
@@ -178,6 +178,11 @@ volume $`d\tau \; (m^{-3})`$ :
...
@@ -178,6 +178,11 @@ volume $`d\tau \; (m^{-3})`$ :


*
Nous appelons
**vecteur densité volumique de courant (de conduction) $`\overrightarrow{j_{cond}}`$ **
le
*produit*
de la
*densité volumique de charges libres $`\rho_{lib}`$*
par le
*vecteur vitesse de dérive $`\overrightarrow{v_{d}}`$*
des porteurs libres de ces charges :
<br>
<br>
**$`\overrightarrow{j_{cond}} = \rho_{lib} \cdot \overrightarrow{v_d}`$**
<!-- images individuelles du gif 5-6-7
<!-- images individuelles du gif 5-6-7


...
@@ -186,6 +191,15 @@ volume $`d\tau \; (m^{-3})`$ :
...
@@ -186,6 +191,15 @@ volume $`d\tau \; (m^{-3})`$ :


*
Équation aux dimensions et unité SI du vecteur densité volumique de courant :
<br>
<br>
$
`[j_{cond}] = [rho_{lib}] \cdot [{v_d}]= [Q] \cdot L^{-3} \cdot L \cdot T^{-1}= [Q] \cdot T^{-1} \cdot L^{-2}= I \cdot L^{-2}`
$
<br>
<br>
*Unité SI*
:
**
ampère par mètre carré : $
`Am^{-2}`
$
`.
* L'**intensité $`
dI
`$** qui traverse en un temps $`
dt
`$ cette surface $`
dS
`$ s'exprime donc :<br>
<br>$`
dI =
\d
frac{dQ_{dS}}{dt}=
\d
frac{dQ_{d
\t
au}}{dt}=
\r
ho_{lib}
\c
dot
\o
verrightarrow{v_d}
\c
dot dt
\c
dot
\o
verrightarrow{dS}
\;\;\;\;\L
ongrightarrow
`$
**$`
dI =
\o
verrightarrow{j_{cond}}
\c
dot
\o
verrightarrow{dS}
`
$
**
<!-- images individuelles du gif 7-8
<!-- images individuelles du gif 7-8

-->

-->
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment