Commit 852ef63d authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 86dafd36
Pipeline #12790 canceled with stage
...@@ -190,24 +190,26 @@ $`\iint_S \overrightarrow{rot} \,\overrightarrow{E}\cdot\overrightarrow{dS} = -\ ...@@ -190,24 +190,26 @@ $`\iint_S \overrightarrow{rot} \,\overrightarrow{E}\cdot\overrightarrow{dS} = -\
* $`\forall \overrightarrow{r}, \overrightarrow{rot} \,\overrightarrow{B} = \mu_0\;\overrightarrow{j} + \mu_0 \epsilon_0 \;\dfrac{\partial \overrightarrow{E}}{\partial t}`$ * $`\forall \overrightarrow{r}, \overrightarrow{rot} \,\overrightarrow{B} = \mu_0\;\overrightarrow{j} + \mu_0 \epsilon_0 \;\dfrac{\partial \overrightarrow{E}}{\partial t}`$
$`\Longrightarrow \iint_S \overrightarrow{rot} \,\overrightarrow{B}\cdot\overrightarrow{dS} = \iint_S\Big(\mu_0\;\overrightarrow{j} + \mu_0 \epsilon_0 \;\dfrac{\partial \overrightarrow{E}}{\partial t}\Big)\cdot\overrightarrow{dS}`$ $`\Longrightarrow \iint_S \overrightarrow{rot} \,\overrightarrow{B}\cdot\overrightarrow{dS} = \iint_S\Big(\mu_0\;\overrightarrow{j} + \mu_0 \epsilon_0 \;\dfrac{\partial \overrightarrow{E}}{\partial t}\Big)\cdot\overrightarrow{dS}`$
* $`\left.\begin{array}{l} * $`\left.\begin{array}{l}
\iint_S \overrightarrow{rot} \,\overrightarrow{B}\cdot\overrightarrow{dS} = \iint_S\Big(\mu_0\;\overrightarrow{j} + \mu_0 \epsilon_0 \;\dfrac{\partial \overrightarrow{E}}{\partial t}\Big)\cdot\overrightarrow{dS} \\ \iint_S \overrightarrow{rot} \,\overrightarrow{B}\cdot\overrightarrow{dS} = \iint_S\Big(\mu_0\;\overrightarrow{j} + \mu_0 \epsilon_0 \;\dfrac{\partial \overrightarrow{E}}{\partial t}\Big)\cdot\overrightarrow{dS} \\
\text{Newton : espace et temps indépendants} \text{Newton : espace et temps indépendants}
\end{array}\right\} \end{array}\right\}
\Longrightarrow`$ \Longrightarrow`$
$`\iint_S \overrightarrow{rot} \,\overrightarrow{B}\cdot\overrightarrow{dS} = -\dfrac{d}{dt}\Big(\iint_S\overrightarrow{B}\cdot\overrightarrow{dS}\Big)`$ $`\iint_S \overrightarrow{rot} \,\overrightarrow{B}\cdot\overrightarrow{dS} = \mu_0\iint_S \overrightarrow{j}\cdot\overrightarrow{dS} +
\mu_0 \epsilon_0\dfrac{d}{dt}\iint_S\overrightarrow{E}\cdot\overrightarrow{dS}`$
* $`\left.\begin{array}{l} * $`\left.\begin{array}{l}
\iint_S \overrightarrow{rot} \,\overrightarrow{B}\cdot\overrightarrow{dS} = \iint_S\Big(\mu_0\;\overrightarrow{j} + \mu_0 \epsilon_0 \;\dfrac{\partial \overrightarrow{E}}{\partial t}\Big)\cdot\overrightarrow{dS} \\ \iint_S \overrightarrow{rot} \,\overrightarrow{B}\cdot\overrightarrow{dS} = \mu_0\iint_S \overrightarrow{j}\cdot\overrightarrow{dS} +
\text{Newton : espace et temps indépendants} \mu_0 \epsilon_0\dfrac{d}{dt}\iint_S\overrightarrow{E}\cdot\overrightarrow{dS} \\
\iint_{S} \;\overrightarrow{rot}\;\overrightarrow{B} \cdot dS = \oint_{\,\Gamma\leftrightarrow S} \overrightarrow{B}\cdot\overrightarrow{dl}
\end{array}\right\} \end{array}\right\}
\Longrightarrow`$ \Longrightarrow`$
$`\iint_S \overrightarrow{rot} \,\overrightarrow{B}\cdot\overrightarrow{dS} = \mu_0\iint_S \overrightarrow{j}\cdot\overrightarrow{dS} + **$`\begin{array}{l}
\mu_0 \epsilon_0\dfrac{d}{dt}\iint_S\overrightarrow{E}\cdot\overrightarrow{dS}`$   \\
\mathbf{\displaystyle\quad\oint_{\,\Gamma\leftrightarrow S} \overrightarrow{B}\cdot\overrightarrow{dl}=
\mu_0\iint_S \overrightarrow{j}\cdot\overrightarrow{dS} +
\mu_0 \epsilon_0\dfrac{d}{dt}\iint_S\overrightarrow{E}\cdot\overrightarrow{dS}}
\end{array}`$**
$`\left.\begin{array}{l} $`\left.\begin{array}{l}
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment