Commit 8c5ca763 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent be2c0a1f
Pipeline #18916 canceled with stage
...@@ -667,7 +667,7 @@ $`\displaystyle d\mathcal{P}_{cédée} = \sum_{i=1}^p\overrightarrow{j_i}\cdot\ ...@@ -667,7 +667,7 @@ $`\displaystyle d\mathcal{P}_{cédée} = \sum_{i=1}^p\overrightarrow{j_i}\cdot\
$`\mathbf{div\,\big(\overrightarrow{U}\land\overrightarrow{V}\big)= $`\mathbf{div\,\big(\overrightarrow{U}\land\overrightarrow{V}\big)=
\overrightarrow{V}\cdot\big(\overrightarrow{rot}\,\overrightarrow{U}\big)\,-\,\overrightarrow{U}\cdot\big(\overrightarrow{rot}\,\overrightarrow{V}\big)}`$ \overrightarrow{V}\cdot\big(\overrightarrow{rot}\,\overrightarrow{U}\big)\,-\,\overrightarrow{U}\cdot\big(\overrightarrow{rot}\,\overrightarrow{V}\big)}`$
<br> <br>
et applique la au champ électromagnétique $`\big(\overrightarrow{E}\,,\overrightarrow{E})`$ en posant $`\overrightarrow{U}=\overrightarrow{E}`$ et applique-là au champ électromagnétique $`\big(\overrightarrow{E}\,,\overrightarrow{B})`$ en posant $`\overrightarrow{U}=\overrightarrow{E}`$
et $`\overrightarrow{V}=\overrightarrow{B}`$ et $`\overrightarrow{V}=\overrightarrow{B}`$
<br> <br>
**$`\mathbf{div\,\big(\overrightarrow{E}\land\overrightarrow{B}\big)=\overrightarrow{B}\cdot\big(\overrightarrow{rot}\,\overrightarrow{E}\big)\,-\,\overrightarrow{E}\cdot\big(\overrightarrow{rot}\,\overrightarrow{B}\big)}`$** **$`\mathbf{div\,\big(\overrightarrow{E}\land\overrightarrow{B}\big)=\overrightarrow{B}\cdot\big(\overrightarrow{rot}\,\overrightarrow{E}\big)\,-\,\overrightarrow{E}\cdot\big(\overrightarrow{rot}\,\overrightarrow{B}\big)}`$**
...@@ -680,9 +680,10 @@ $`\mathbf{div\,\big(\overrightarrow{U}\land\overrightarrow{V}\big)= ...@@ -680,9 +680,10 @@ $`\mathbf{div\,\big(\overrightarrow{U}\land\overrightarrow{V}\big)=
$`div\,\big(\overrightarrow{E}\land\overrightarrow{B}\big) $`div\,\big(\overrightarrow{E}\land\overrightarrow{B}\big)
=\,\overrightarrow{B}\cdot\big(\underbrace{\overrightarrow{rot}\,\overrightarrow{E}} =\,\overrightarrow{B}\cdot\big(\underbrace{\overrightarrow{rot}\,\overrightarrow{E}}
_{\color{blue}{=-\frac{\partial \vec{B}}{\partial t}}\big)\, _{\color{blue}{=-\frac{\partial \vec{B}}{\partial t}}\big)\,
- \overrightarrow{E}\cdot\big(\underbrace{\overrightarrow{rot}\,\overrightarrow{B}} -
\overrightarrow{E}\cdot\big(\underbrace{\overrightarrow{rot}\,\overrightarrow{B}}
_{\color{blue}{=\mu_0\,\vec{j}+\mu_0\epsilon_0\frac{\partial \vec{E}}{\partial t}}\big)`$ _{\color{blue}{=\mu_0\,\vec{j}+\mu_0\epsilon_0\frac{\partial \vec{E}}{\partial t}}\big)`$
<br> <br> ok
$` $`
div\,\big(\overrightarrow{E}\land\overrightarrow{B}\big) div\,\big(\overrightarrow{E}\land\overrightarrow{B}\big)
=\,-\,\overrightarrow{B}\cdot \dfrac{\partial \vec{B}}{\partial t}\,-\, \mu_0\,\vec{j}\cdot\overrightarrow{E}\, =\,-\,\overrightarrow{B}\cdot \dfrac{\partial \vec{B}}{\partial t}\,-\, \mu_0\,\vec{j}\cdot\overrightarrow{E}\,
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment