Commit 8ff7a125 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 3e4bcaca
Pipeline #13550 canceled with stage
......@@ -121,7 +121,7 @@ $`\quad = \left(
\dfrac{\partial^2 U_x}{\partial y \,\partial x}+\dfrac{\partial^2 U_y}{\partial y^2}+\dfrac{\partial^2 U_z}{\partial y \,\partial z}\\
\dfrac{\partial^2 U_x}{\partial z \,\partial x}+\dfrac{\partial^2 U_y}{\partial z \,\partial y}+\dfrac{\partial^2 U_z}{\partial z^2}
\end{array}\right)`$
$`\quad -
$`\quad - \quad
\left(\begin{array}{l}
\dfrac{\partial^2 E_y}{\partial y\,\partial x}
-\dfrac{\partial^2 E_x}{\partial y^2}
......@@ -158,28 +158,42 @@ $`\quad = \left(\begin{array}{l}
\end{array}\right)`$
* L'ordre de dérivation n'important pas,
(exemple : $`\dfrac{\partial^2}{\partial x\,\partial y}=\dfrac{\partial^2}{\partial y\,\partial x}),
(exemple : $`\dfrac{\partial^2}{\partial x\,\partial y}=\dfrac{\partial^2}{\partial y\,\partial x})`$,
nous remarquons alors que toutes les dérivées partielles du second ordre correspondant à
des termes croisés de coordonnées s'annulent :
$`\overrightarrow{grad}\big(div\;\overrightarrow{E}\big)
-\overrightarrow{rot}\big(\overrightarrow{rot}\,\overrightarrow{E}\big)`$
$`\require{cancel}\quad = \left(\begin{array}{l}
\dfrac{\partial^2 U_x}{\partial x^2}+\color{blue}{\cancel{\dfrac{\partial^2 U_y}{\partial x\, \partial y}}}+\color{blue}{\cancel{\dfrac{\partial^2 U_z}{\partial x \,\partial z}}}\\
\quad\quad - \dfrac{\partial^2 E_y}{\partial y\,\partial x}
\quad\quad - \color{blue}{\cancel{\dfrac{\partial^2 E_y}{\partial y\,\partial x}}}
+\dfrac{\partial^2 E_x}{\partial y^2}
+\dfrac{\partial^2 E_x}{\partial z^2}
-\dfrac{\partial^2 E_z}{\partial z\,\partial x} \\
-\color{blue}{\cancel{\dfrac{\partial^2 E_z}{\partial z\,\partial x}}} \\
\\
\dfrac{\partial^2 U_x}{\partial y \,\partial x}+\dfrac{\partial^2 U_y}{\partial y^2}+\dfrac{\partial^2 U_z}{\partial y \,\partial z}\\
\quad\quad - \dfrac{\partial^2 E_z}{\partial z\,\partial y}
\color{blue}{\cancel{\dfrac{\partial^2 U_x}{\partial y \,\partial x}}}+\dfrac{\partial^2 U_y}{\partial y^2}+\color{blue}{\cancel{\dfrac{\partial^2 U_z}{\partial y \,\partial z}}}\\
\quad\quad - \color{blue}{\cancel{\dfrac{\partial^2 E_z}{\partial z\,\partial y}}}
+\dfrac{\partial^2 E_y}{\partial z^2}
+\dfrac{\partial^2 E_y}{\partial x^2}
-\dfrac{\partial^2 E_x}{\partial x\,\partial y} \\
-\color{blue}{\cancel{\dfrac{\partial^2 E_x}{\partial x\,\partial y}}} \\
\\
\dfrac{\partial^2 U_x}{\partial z \,\partial x}+\dfrac{\partial^2 U_y}{\partial z \,\partial y}+\dfrac{\partial^2 U_z}{\partial z^2}\\
\quad\quad - \dfrac{\partial^2 E_y}{\partial x\,\partial z}
\color{blue}{\cancel{\dfrac{\partial^2 U_x}{\partial z \,\partial x}}}+\color{blue}{\cancel{\dfrac{\partial^2 U_y}{\partial z \,\partial y}}}+\dfrac{\partial^2 U_z}{\partial z^2}\\
\quad\quad - \color{blue}{\cancel{\dfrac{\partial^2 E_y}{\partial x\,\partial z}}}
+\dfrac{\partial^2 E_x}{\partial x^2}
+\dfrac{\partial^2 E_z}{\partial y^2}
-\dfrac{\partial^2 E_z}{\partial y\,\partial z} \\
-\color{blue}{\cancel{\dfrac{\partial^2 E_z}{\partial y\,\partial z}}} \\
\end{array}\right)`$
* Au total nous obtenons l'expression simple :
**$`\large{\overrightarrow{grad}\big(div\;\overrightarrow{E}\big)
-\overrightarrow{rot}\big(\overrightarrow{rot}\,\overrightarrow{E}\big)}`$**
**$`\quad \large{=
\left(\begin{array}{l}
\dfrac{\partial^2 U_x}{\partial x^2}\\
\dfrac{\partial^2 U_y}{\partial y^2}\\
\dfrac{\partial^2 U_z}{\partial z^2}\\
\end{array}\right)}`$**
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment