Commit 961a9f4f authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent b8b372ea
Pipeline #13298 canceled with stage
...@@ -424,18 +424,18 @@ Par ailleurs,$`\phi`$ étant un champ scalaire, sa différentielle exprimée en ...@@ -424,18 +424,18 @@ Par ailleurs,$`\phi`$ étant un champ scalaire, sa différentielle exprimée en
$`\mathbf{d\phi=\left.\dfrac{\partial \phi}{\partial \alpha}\right|_M\cdot dl_{\alpha} + \left.\dfrac{\partial \phi}{\partial \beta}\right|_M\cdot dl_{\beta} + \left.\dfrac{\partial \phi}{\partial \gamma}\right|_M\cdot dl_{\gamma}}`$ $`\mathbf{d\phi=\left.\dfrac{\partial \phi}{\partial \alpha}\right|_M\cdot dl_{\alpha} + \left.\dfrac{\partial \phi}{\partial \beta}\right|_M\cdot dl_{\beta} + \left.\dfrac{\partial \phi}{\partial \gamma}\right|_M\cdot dl_{\gamma}}`$
---------------------> --------------------->
*$`\mathbf{d\phi}`$*$`\;=\dfrac{\partial \phi}{\partial \alpha}\cdot d\alpha + \dfrac{\partial \phi}{\partial \beta}\cdot d\beta + \dfrac{\partial \phi}{\partial \gamma}\cdot d\gamma`$ *$`\color{blue}{\mathbf{d\phi}}`$*$`\;=\dfrac{\partial \phi}{\partial \alpha}\cdot d\alpha + \dfrac{\partial \phi}{\partial \beta}\cdot d\beta + \dfrac{\partial \phi}{\partial \gamma}\cdot d\gamma`$
*$`\;= *$`\color{blue}{\;=
\dfrac{\partial \phi}{\partial dl_{\alpha}}\,\dfrac{\partial dl_{\alpha}}{\partial \alpha}\, \mathbf{d\alpha} \dfrac{\partial \phi}{\partial d\alpha}\,\dfrac{\partial \alpha}{\partial dl_{\alpha}}\, \mathbf{dl_{\alpha}}
+\dfrac{\partial \phi}{\partial dl_{\beta}}\,\dfrac{\partial dl_{\beta}}{\partial \beta}\, \mathbf{d\beta} +\dfrac{\partial \phi}{\partial d\beta}\,\dfrac{\partial \beta}{\partial dl_{\beta}}\, \mathbf{dl_{\beta}}
+\dfrac{\partial \phi}{\partial dl_{\gamma}}\,\dfrac{\partial dl_{\gamma}}{\partial \gamma}\, \mathbf{d\gamma}`$* +\dfrac{\partial \phi}{\partial d\gamma}\,\dfrac{\partial \gamma}{\partial dl_{\gamma}}\, \mathbf{dl_{\gamma}}}`$*
La comparaison terme à terme de ces deux expressions de $'d\phi`$ donne :
La comparaison terme à terme de ces deux expressions de $d\phi`$ donne l'expression de
$`\overrightarrow{grad}\,\phi`$ en coordonnées $`(d\alpha\,,d\beta\,,d\gamma)`$ :
$`\left.\begin{align}{l} $`\left.\begin{align}{l}
\d\phi=X_{\alpha}\,dl_{\alpha}+X_{\beta}\,dl_{\beta}+X_{\gamma}\,dl_{\gamma}\\ X_{\alpha}=dl_{\alpha}+X_{\beta}\,dl_{\beta}+X_{\gamma}\,dl_{\gamma}\\
\d\phi=\dfrac{\partial \phi}{\partial dl_{\alpha}}\,\dfrac{\partial dl_{\alpha}}{\partial \alpha}\,d\alpha \d\phi=\dfrac{\partial \phi}{\partial dl_{\alpha}}\,\dfrac{\partial dl_{\alpha}}{\partial \alpha}\,d\alpha
+\dfrac{\partial \phi}{\partial dl_{\beta}}\,\dfrac{\partial dl_{\beta}}{\partial \beta}\,d\beta +\dfrac{\partial \phi}{\partial dl_{\beta}}\,\dfrac{\partial dl_{\beta}}{\partial \beta}\,d\beta
+\dfrac{\partial \phi}{\partial dl_{\gamma}}\,\dfrac{\partial dl_{\gamma}}{\partial \gamma}\,d\gamma\\ +\dfrac{\partial \phi}{\partial dl_{\gamma}}\,\dfrac{\partial dl_{\gamma}}{\partial \gamma}\,d\gamma\\
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment