Commit 980354f2 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 49c884e0
Pipeline #17602 canceled with stage
...@@ -112,17 +112,17 @@ RÉSUMÉ ...@@ -112,17 +112,17 @@ RÉSUMÉ
---------------> --------------->
* $`div\,\overrightarrow{B} = 0\quad`$ (Maxwell-Thomson) * *$`div\,\overrightarrow{B} = 0\quad`$ (Maxwell-Thomson)*
<br> <br>
$`\color{blue}{\scriptsize{\left.\begin{align} &\forall \overrightarrow{V}\,,\, $`\color{blue}{\scriptsize{\left.\begin{align} &\forall \overrightarrow{V}\,,\,
div \,(\overrightarrow{rot}\,\overrightarrow{V})=0\\ div \,(\overrightarrow{rot}\,\overrightarrow{V})=0\\
&div\,\overrightarrow{U}=0\end{align}\right\}\Longrightarrow &div\,\overrightarrow{U}=0\end{align}\right\}\Longrightarrow
\exists\overrightarrow{V}\,,\, \overrightarrow{U}=\overrightarrow{rot}\,\overrightarrow{V}}}`$ \exists\overrightarrow{V}\,,\, \overrightarrow{U}=\overrightarrow{rot}\,\overrightarrow{V}}}`$
<br> <br>
$`\exists\overrightarrow{A}\,,\, \overrightarrow{B}=\overrightarrow{rot}\,\overrightarrow{A}`$ $`\exists\overrightarrow{A}\,,\, \large{\color{brown}{\overrightarrow{B}=\overrightarrow{rot}\,\overrightarrow{A}}}`$
* $`\overrightarrow{rot}\,\overrightarrow{E}=-\dfrac{\partial \overrightarrow{B}}{\partial t}\quad`$(Maxwell-Faraday) * *$`\overrightarrow{rot}\,\overrightarrow{E}=-\dfrac{\partial \overrightarrow{B}}{\partial t}\quad`$(Maxwell-Faraday)*
<br> <br>
$`\quad\quad\;=-\dfrac{\partial \big(\overrightarrow{rot}\,\overrightarrow{A}\big)}{\partial t}`$ $`\quad\quad\;=-\dfrac{\partial \big(\overrightarrow{rot}\,\overrightarrow{A}\big)}{\partial t}`$
<br> <br>
...@@ -142,21 +142,12 @@ $`\color{blue}{\scriptsize{\left.\begin{align} &\forall \phi\,,\, ...@@ -142,21 +142,12 @@ $`\color{blue}{\scriptsize{\left.\begin{align} &\forall \phi\,,\,
<br> <br>
$`\exists V\,,\, \overrightarrow{E}+\dfrac{\partial \overrightarrow{A}}{\partial t}=-\,\overrightarrow{grad}\,V`$ $`\exists V\,,\, \overrightarrow{E}+\dfrac{\partial \overrightarrow{A}}{\partial t}=-\,\overrightarrow{grad}\,V`$
<br> <br>
$`\color{blue}{\scriptsize{\text{soit :}}}`$
<br>
**$`\large{\mathbf{\overrightarrow{E}=-\,\overrightarrow{grad}\,V-\dfrac{\partial \overrightarrow{A}}{\partial t}}}`$** **$`\large{\mathbf{\overrightarrow{E}=-\,\overrightarrow{grad}\,V-\dfrac{\partial \overrightarrow{A}}{\partial t}}}`$**
$`\Longrightarrow \overrightarrow{rot}\,\left(\overrightarrow{E}+\dfrac{\partial \overrightarrow{A}
}{\partial t}\right)=\overrightarrow{0}`$
$`\quad = A\cdot
\;\underbrace{cos \Big[\,\Big(\omega t - \vec{k}\cdot\vec{r} + \varphi'\Big) - \dfrac{\pi}{2}}_{\color{blue}{cos(a-\pi/2)\\\;=cos(a)\,cos(\pi/2)+sin(a)\,sin(\pi/2)\\=\;sin(a)}}\Big]`$
$`\color{blue}{\scriptsize{\left.\begin{align} \quad\quad &cos(a+b)=cos(a)cos(b)-sin(a)sin(b)\\
&cos(a-b)=cos(a)cos(b)+sin(a)sin(b)\end{align}
\right\}\Longrightarrow\\
\quad\quad cos^2(a)=cos(a)cos(a)=\dfrac{1}{2}[cos(a+a)+cos(a-a)]\\
\quad\quad\quad\quad=\dfrac{1}{2}[1 + cos(2a)]}}`$
<!------------- <!-------------
$`\color{blue}{\scriptsize{\quad\quad $`\color{blue}{\scriptsize{\quad\quad
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment