Commit 99424756 authored by Claude Meny's avatar Claude Meny

suite

parent 1e06b978
Pipeline #559 failed with stage
in 21 seconds
......@@ -162,4 +162,30 @@ You know $`\overline{SA_{obj}}`$, $`n_{inc}`$ and $`n_{eme}`$, you have previous
! Copy this result into (equ.2) leads to $`\overline{M_T}=+1`$.
#### Graphical study
\ No newline at end of file
#### Graphical study
##### 1 - Determining object and image focal points
Positions of object focal point F and image focal point F’ are easily obtained from the conjunction equation (equ. 1).
* Image focal length $`\overline{OF'}`$ : $`\left(|\overline{OA_{obj}}|\rightarrow\infty\Rightarrow A_{ima}=F'\right)`$<br>
&nbsp;&nbsp;&nbsp;&nbsp;(equ.1)$`\Longrightarrow\dfrac{n_{eme}}{\overline{SF'}}=\dfrac{n_{eme}-n_{inc}}{\overline{SC}}\Longrightarrow\overline{SF'}=\dfrac{n_{eme}\cdot\overline{SC}}{n_{eme}-n_{inc}}`$
* Object focal length $`\overline{OF}`$ : $`\left(|\overline{OA_{ima}}|\rightarrow\infty\Rightarrow A_{obj}=F\right)`$<br>
&nbsp;&nbsp;&nbsp;&nbsp;(equ.1) $`\Longrightarrow-\dfrac{n_{inc}}{\overline{SF}}=\dfrac{n_{eme}-n_{inc}}{\overline{SC}}\Longrightarrow\overline{SF}=-\dfrac{n_{inc}\cdot\overline{SC}}{n_{eme}-n_{inc}}
`$
##### 2 - Thin spherical refracting surface representation
* **Optical axis = revolution axis** of the refracting surface, positively **oriented** in the direction of
propagation of the light (from the object towards the refracting surface)
* Thin spherical refracting surface representation :<br><br>
\- **line segment**, perpendicular to the optical axis, centered on the axis with symbolic
**indication of the direction of curvature** of the surface at its extremities.<br><br>
\- **vertex S**, that locates the refracting surface on the optical axis.<br><br>
\- **nodal point C = center of curvature**.<br><br>
\- **object focal point F and image focal point F’**.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment